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summary
This report contains a development of the classical Hamilton-Jacobi
perturbation techniques, applying the known solution of the Two Fixed Center

Problem to the Restricted Three Body Problem. '

SECTION I - INTRODUCTION

This report contains an outline of the development of 2 perturbation
procedure for solving the restricted threc body problem, using the solution
of the two [ixed center problem as an intermediate orpit. In the restricted
problem, it is asswmed that the two primuary bodies move in circles apout
tacir center of mass, the varycenter. The primuary bodies will be fixed in a
coordinate system rotating with their angular velocity, so that the use of

P
o

h
two [ixed center problem is Immediately suggested. The two fixed center
proslem was first treated by Euler, who discovered that its equations of
motion are separable in prolate spheriodial coordinates. A very complete
discussion of the two {ixed center probiem has been given by Charlier(l).

This treatment covers some of the same ground as this report. It is from the



Hamiltorian point of view and includes a discussion of the aciion and ungle
variables, and the way in which the vwo {ixed cenicr problem would be used

as a basis for a perturbation theory for tie restricted problem. Thac only
thing missing from Charlier's treatmoent is an explicit solution of the two
fixed center proovlem, wiich would be necessury Tov the acwial appileation to
the restricted problem.  Formal expressions for the action and angle variables
are opiained from a more modern point ol view vy Buchhci:n@). Bricf
discussions of ithe two {ixed center provler arc given in many standard text
books such as \Vnitmkcrw), Landau and LifschitzH) and \\'imner(s). The
explicit solution of ithe two fixed center problem nas been obtained by Pines
and Paync((i). In the present report, this solution will be combined with a
Hamilronian development of the probiem to show how perturbation cquations
for the restricted provlem may be obiwined. A different development has been
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carried out recently by Davidson and Schulz-Arenstoril In this theory,

the initizl conditions of a two fixed center problem are used as parameters

and a first order corvection for the restricied provlem is obtained in closed
forim. Second-order corrections are obtained by a numerical curve-fitting

scheme.

In this report, Section II will contain a discussion of the restricted
provlem, and the way in which the two {ixed center probiem will be used. In
Section III, the solution of the two fixed center problem will be outlined in
sulficient detail for the determination of the action and angle variables, which
is carried out in Scections IV and V. Finally in Section VI a summary will
be given of the cssential steps still necessary to obtain the solution of the

restricted problem.



SECTION II - THE RESTRICTLED £2A0BLEM

The equations of motion of tic restricied problem are
Ii i B‘)
Ro- g —r - o =2 (1)
- v -
r, r,

where R s the position vecior of ithe vehiiele in a coordinate system fixed in

[

pace, R, and R, are respecetively tihe position vectors of the veaicle from
carth and

o~

moon (with magnitudes ry and 1), and 4 and ' are the gravita-

toaul constant times mass of the carth and moon, respectively.  Since the

baryveceawer (center of mass of carth and moon) may be regarded as a point

ixed in space, the veetor R will henceforth be regarded as relative 1o a

sysiem fixed in space with origin at the barycenter. The carth and moon are

waken as moving-in cireles about the barycenter with angular velocity vector

10

. To usc the two fixed center problem as an approximation to the restricted
problem, it is necessary to write the cquations of motion in a coordinate
system in which the earth and moon arc fixcd. Such a system is onc rotaling
about the barycenter with angular velocity Q relative to the fixed system.
Decnoting the position vector in the rotating system by R', the equations of
motion (1) become

R R, :
RU=p— - 0 = -20%R'-Q x @ xRy (@)
ry T -
It is readily shown that the Lagrangian for the cquations of motion (2) is
. . A 1 Al
OC’:%-R'2+Q‘I_{'XI}+%@XI§‘)‘+{§1+~I¢)— (3)
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and hence the momentum vector conjugate to the position vector R 1s given

by

P = gradR/Of= R’-02 xR (1)

and the Hamiltonian for the problem is

. 9 ‘ 1
H=P-R'-X,’=%—P“-Q-I'XP-3——i— (3)
-7 “ S O
and the Hamiltonian cquations are
. R, R
P=rgmdgrH=-BrRouTy ob Ty ©
1 2
and
3'=gradPH=g—Q XI_{' (7)

It will be noted that Eq. (7) is equivalent to Eq. (4), and that if P is replaced using
Eq. (4), then Eq. (6) will yield the cquations of motion (2).

The solution of the restricted problem will be carried out by making use of
a transformation theorem (Reference 1, Chapter 11 and Reference 12, pp 237 to
246) which states that if the Hamiltonian of a system is H (qi, P t) with q; and
p; canonically conjugate coordinates so that the Hamilton equations
. > H R
4, = ’ p. =~ , . (b)

i 4

)/
o
Y/

[
/

are satisfied and if ¥ (qi’ Pi’ t) is any function, then the variables Qi and Pi

defined by

_ ot _ _ 23U _
Ql - apl - Ql (ql’ Pi’ t)’ p. = ) —Pi(qi» Pi' t) (9)

arc canonical variables for a new Hamiltonian

?1=H+-§—‘t*— (10)
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3H 5 _ _>H

Q=35+ BiT-Iq (11)
1 1
Now let the Hamiltonian be separated into two terms

with Hl independent of the time and such that the partial differential equation

Hy@p5q) f ST 00 (13)

possesses a solution for ¥ 1 It is seen that if the function ¢ 1 is used in the trans-

formation theorem then the Hamilton equations become

Q =5(H1+H2+F{—)—5H2
i 3 P, " 3P,
1 1
>0, (14)
. _B(Hl-f—H2+ ST ) OH2
P. = = - =
i oQi le

by virtue of the defining Eq. (13) for "Ul . Further, from Eq. (13), it is evident

that, since Hl is independent of time,

v, = -ht+Wg P,) (15)

with

3
<
o}

Hy @ ¥>'h=° e
and the momenta Pi must be identified with the constants of integration of Eq.
(16) and h, the separation constant for the time. This is not to be interpreted as
meaning that the Pi are constants of the motion for the Hamiltonian H. If this
were so, the right-hand sides of Eq. (14) would have to vanish. What the solution
of Eq. (16) for W does is to specify a function of q; and three new variables P..
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This function may be used to invert Eqs. {9) to obtain G and P, in terms of the
new variables Pi and three others Qi' These expressions for 9 .and p; may now
be inserted in H, for use in Egs.- (14) from which Qi and Pi may now be obtained
as functions of time. The solution of the problem associated with H will then be
given by substituting the solutions Qi and Pi of Egs. (14) in the expression for

4 and p;-

To actually carry out the inversion of Eqs. (9) it must be noted that the
functional form of ¥ 1 does not depend on the disturbing function ultimately to
be used. It depends rather on how the identification of the Pi is made with the
integration constants arising in Eq. (16). The conventional procedure is to re-
gard H1 as the Hamiltonian of a new problem and identify the Pi with the action
variables Ji of this new problem. The action variables are always three inde-
pendent functions of the integration constants and hence are themselves constant

for the problem associated with Hl' Once the functional relation between the

‘Pi and the integration constants is determined, by identifying the Pi with the

action variables Ji of Hl’ the conjugate coordinates Qi are defined by Eq. (9).
It will always happen that Pi and Qi so defined are constant if the Hamiltonian
is Hl because from Eq. (13)

1
S My +—=7)
Q‘ = :O
i BPi
(17)
30,
- oM, =)
J =P = - Ten =0

Once the functional relation between q and P, and Qi and Ji is established,

however, the problem associated with H1 is no longer of interest. The disturbing

function H, is expressed in terms of Q; and J, and the sclution of the p
& Y 1

associated with H is obtained by integrating Eqs. (14).

A slightly different formulation of the problem is obtained if the time inde-
pendent function W of Eq. (15) is used as the generating function of the trans-

formation rather than ¢ 1 The variables w, conjugate to the action variables
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Ji are the angle variables of the problem associated with H The relations

1
between the w, and the Qi are given by

3 (¥, + ht)
aw ol ) 3h
Wl_aJi 5 Jd ‘Qi+t-a—i'*vlt+Qx (18)
with
Vs =+ao—h (19)

being functions of the action variables. The perturbation equations for these

variables will be given, according to the transformation theorem, by

W .
oy +Hy =) Ol
Wi T 3J. =33, ™Y
1 1
20)
SW (
: o (Hy +Hy + =577) oH,
) S Sl SW, T 3w,
1 1

since W is independent of time and Hl = h depends only on the action variables
and not on the angle variables. The advantage of using the angle variables rather
than the'Qi is that it will always be possible to expand H2 in a multiple Fourier

series in the angle variables and eliminate its explicit dependence on time.

To use the two fixed center problem to solve the restricted problem, the
Hamiltonian (5) for the restricted problem may be separated into terms H1 and

H2 as follows:

~

1 2 u u
H =5p -— - = (21)
1 2 r ry
H2:—Q-R’xp @2)
If Hl is regarded as a Hamiltonian, the associated Hamilton equations are
Wy
R'= - gradP H =P (23)
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and

. ) .o

= - O = - [} - = = 2
P gradR ‘ Hl & U 3 R (24)
These last equations are just the equations of motion for the two fixed center prob-
lem, so that H1 is the Hamiltonian of the two fixed center problem. Thus the pro-
ccdure will be {irst to find the action and angle variables of the two fixed center
problem and then express the disturbing function

H, = - “R'x P (23)

I

in terms of these variables.

Before proceeding with the details of this procedure, it is desirable to make
two further transformation of the coordinates. The first will be to a coordinate
éystem with the origin at the midpoint of the earth-moon line with the earth and
moon on the x-axis at (¢,0,0) and (-c,0,0) respectively. The distance between
the earth and moon is thus 2c. The z-axis will be taken in the direction of 2 .
The only term in the Hamiltonian affected by this transformation is the Q - R'xP

term in which R " is measured from the barycenter. From Figure I it is evident

Vehicle
v

Barycenter Earth

(=

Moon

Figure 1
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From the equations for x, y, and z it is scen that

x=cq1q2
2 2
y=c‘/(q1 - 1)@ -qy) cos @ (30)
[2 2. .
z=cV@ -1 -qy) sinog

In this system the surfaces q, = const 2 1 are ellipsoids of revolution about the
x-axis confocal about the earth and moon. The limiting surface q; =1 is the
portion of the x-axis between the earth and moon, and the ellipsoids increase in
size with increasing q;- The surfaces -1 < 4y = const < 1 are hyperboloids of
revolution about the x-axis, confocal about the earth and moon. The limiting
surfaces qq = 1 and qy = -1 are the portions of the x-axis to the right of the
earth and to the left of the moon, respectively. The surface 9o = 0 is the y-z
plane and surfaces corresponding to positive values of q, are hyperboloids con-
cave towards the earth while those corresponding to negative values of qy are
concave towards the moon. The angle ¢ is measured in the y-z plane about the
x-axis and is zero in the portion of the x-y plane for which y > 0. From Eq. (30),
it is easy to show that r and r, which appear in the Hamiltonian (5) are given
by

r; =c@ -q)
81
ry =¢(Q) + Q)
The equations for Pys Py p‘p are
2 2. .
cq,(1-q,) cose cq,(l-q, ) sing
p, =cq,P_+ P + P
1 27 x z
[ 2 2 Yoz 2
V@, -1) 1-q;7) @"-1)(1-q,%
(32)
2 2 .
Cq, (4 -1) cosp Cqy(@; -1)sing
p, = Cq - P - P
2 1" x y z

Via2-1)-a,7) Yia2-1-q,2)

10
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27 2. . g2
'CV(ql -1)(1 -q, ) sing Py+ ci(q, - -q22) cosp P,

.U .
1

32)

Inverting these equations to obtain Px’ Py and Pz in terms of P1» Py and p(p one
obtains for H1

H,
Hy =%P2”L o
: 1 2
2 2. 2 2
@, l)p (1-9,) p p
1 2 2 © 1
2 t T T3 5.1 B3
Q-9 @ @Q -1Hd-q,)
u W

T efa -ay) c(a;+ay)

and for the disturbing function

2
» {J(q1 -hi-q) - yy N
- @2 g.2 €08 @ P13 ~Po%) * iy 191 “Pa9p) |
1% .
¢4
Py sin @

Vi 21 -q,3

@ a; + #___,._;'_w }

This completes the preliminary discussion of the problem. The following sections
contain the solution of the two fixed center problem which will be useful in the sub-
sequent determination of the generating function W from Eq. (16) and the action

and angle variables for the two fixed center problem which will be the Wy and J i of

the perturbation Eqs. (19).

11
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SECTION III - SOLUTION OF THE TWO FIXED CENTER PROBLEM

The Hamiltonian for the two fixed center problem, obtained in the last sec-
tion is

2 2
o L (4Tt a (-4 2, P, 3
TLll2_—2P 2_ 2 P2 21 102
q; -9 4, -9y @ -1)d-qy)

, (35)
Lk
¢ -ay) | @ +ay)

The generating function W(ql, Ay> @, Pl’ P2, P3), which will ultimately be used
to obtain the W, and Pi for the perturbation equations is also a very convenient
device for obtaining a direct solution to the two fixed center problem. Recalling

that for the transformation to be canonical, one must have

PL " Sq
% g, ‘ 0
® " 3o
and
Q; = 3p- : (7

Replacement of Py, Py and p(p by the partials of W with respect to 91> dg» and ¢,
respectively, in Eq. (35) gives a partial differential equation for W which is sepa-
rable. That is, a solution of the form

W =W, @, Py) + W, (4 P)+ Wy (@, P (38)
exists. It is a fairly simple matter to verify that

12
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where

2
<dw1\ J2WN 2 2 R @)
dqu \3q, / 1 (q12-1)2 1
2 2
<dwz> Sraws 2 2d £ @)
d g, \aq2/ 2 (l-q22)2 2
I 2
(3 /73wy _ 2 _ 2
\dgo) \Teo/ Th =¢
2 2 2 u+u’ o
2 2 u’ o>
s° @) = (1 -q,%) (-hoyt + A A G +B) -2
C

interpretation.

(39)

(40)

(41)

In Equations (40) and (41), h is the constant energy of the two fixed center problem
and is to be identified with the constant h of Equation (15) in the previous section.
The separation constants are o and 8. It is easily shown that « is the x-component

of angular momentum about the line of centers. The constant B has no such simple

At this stage everything necessary for the solution of the two fixed center prob-

the next section.

lem is available; further discussion of the generating function will be deferred to

The Hamilton equations for the two fixed center problem give the time de-

rivatives of 9> 9 and ¢ as

2

_oH P g -1
4, = ap; T2 2 2
c ql-qZ

3H 1-g2
o = to2 %
2 dp, 2 2
2 9 "9

13
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. _ DH P
o 3p T T T 2 *+2)
® ¢ (q -1)(1-q2)
Combination of these equations with Equation (39) yields
Jz Ry
4G =" T3
q; -4
S (ay)
LZ 56
9="¢ 2 2 | (43)
9 "%
. (o1
(p =

¢® @2 -1) @ -q,)

A preferable form for these equations is the following in which a parameter
u is introduced which completes the separation of the variables:

dq dq
1 2
—ﬁ'—:'s— = du (44)
2 2
dt =—— (q,° - q,°) du (45)
Jz oL 2
r A
dp = —2 g+ —1 | du. (46)

From Equation (44), which leads to elliptic integrals of the first kind, q

and dy turn out to be expressible as elliptic functions of u. Using these expressions

for 9 and 9y in Equations (45) and (46), it is then possible to obtain t and ¢ as

functions of u. The integration of Equations (45) and (46) involves elliptic integrals
\

of the second and third kinds.

The form of solution of Equation (44) depends on the nature of the roots of

the quartic expressions R2 and S . These roots are uniquely determined by the

14
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three dynamical constants h, « and 8. It is shown in Reference 6 that if
h < 0, R2 must have four real roots, two of which exceed unity and the other
two lie in the interval (+1). Further, R2 is positive between the largest roots
and also between the smallest. Since, however, q; must exceed unity, it

follows that a; is constrained between the largest roots. Thus, if the roots of

R In order of decreasing magnitude are denoted by r Tgy T 1t may be
said that

-1<r4<r3<1<r2<q1<r1 47)
This conclusion may be stated a little differently: the bounds r and ry on q;

represent two ellipsoids (the larger corresponding to rl) which bound the region

in space in which the vehicle may move.

The corresponding results for the quartic 82 are more complicated: none
of the roots exceed unity and at least two lie in the interval (x1). The other two
may also lie in this interval, may be real and both less than -1, or may be com-
plex. The quartic is positive between the two largest roots and between the two
smallest, if they are real. Since Qo must lie in the interval (1) it follows that
the orbit is constrained between the two largest roots or between the two smallest
if they also lie in the (¥ 1) interval. If all four roots of S2 are in (1), knowledge
of the position of one point of the orbit specifies whether DY is constrained between
the largest or the smallest roots; transitions from one band to the other cannot
occur, since if S2 becomes negative, q2 becomes imaginary. The roots of S2

in the interval (x1) correspond to hyperboloids bounding the motion in space.

Summarizing the above results for negative energy, two possibilities for
bounds on the orbit occur. These are shown in Figures I and II where the shaded

areas are regions in which motion may occur.

15
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-1<r4<r3<1<r2<ql<r

1

either Sq) s4<-1
-l<s,<q,<s <1{
2 2 1 or s,, s, complex
3’ %4 P
Figure II

Sg

s 3

4

Y
a4

-l<s4<s3<32<q2<s <1

1

-1<s4<q2<s <s,<s.<1

3 2 1
*1<r4<r3<1<r2<q1<r
Figure I

1
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If one thinks of h, o and B, which determine all the roots of R2 and S2 as

being three dynamical specifications of a two fixed center orbit, it is clear that

-any remaining specifications must not violate the bounds on the region in which

the motion can occur. That is, these bounds impose constraints on any further
specifications. Actually, not even h, @ and B can be arbitrarily selected: they

must lead to roots of R satlsfymg Equation (47) and roots of 82 satisfying one
or the other of the following:

-1<g.sg.< i
(@) 1 So=s; 1andeither Sqs s4< 1or Sq, 8 complex

| : (48)
B) -1=<s,<s.% SpSs; <1

If the energy is positive, it may be shown that R2 has‘ one root, say r, ex-
ceeding unity and is positive for q; exceeding r. The other roots are all less
than 1. The quartic 52 has two roots Sg < 8, in the interval (+1), and one on each
side of this interval. It is positive for 83 < qg < Sy- Thus in this case the motion

must take place in the unbounded region shown in Figure IV.

I

q>r, >1

1 .
-1<53.<q2<sz<1

Figure IV

17
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As noted above, q, and q, are expressible in terms of elliptic functions
of u. The particular elliptic function occurring depends on the nature of the roots.
In all cases, see Reference 6,

Aif(ai(u+ﬁ1))+Bi

q.

. (49)

) Cif(ozi(u+/31))-1

The Ai’ Bi’ 0; are constants depending only on the roots and hence on h, « and

8. The constants Bi depend on h, @ and B as well as whatever additional spec~
ifications are made to select a particular orbit. For ;s the function f is an sn
or dn function according as h is negative or positive. For dg» h <o, fisan

sn or cn function according as all four or only two of the roots are real and if

h > o, f isa dn function. It is evident, of course, that 9 and q, are individually
periodic in the variable u. The periods of q and q, are, however, in general
non-commensurable, so that the motion in space of the vehicle will, in general, be
nonperiodic. The quarter periods of 4 and q, are usually denoted by Kl and KZ’
respectively, and it may be shown that these quarter periods depend only on the
roots of R2 and Sz, respectively, and hence only on h, o and 8. From the way

in which the Bi occur in Equation (49), it is evident that they represent a phase.

In fact, it is assumed in Equation (49) that u = o corresponds to some point on

the orbit, say the initial point, and the Bi represent the variation in u required

to get from this point to one of the extreme values of q; - that is, to a point of
tangency with one of the bounding ellipsoids for 9 and with one of the bounding
hyperboloids for q-

The integration of the equations for time and ¢ leads in all éases to the

following forms (consult Reference 6)

t=@ -ny)u+F @+ Fy@ (50)
©= (m1 + m2) u + Gl(u) + Gz(u) (51)

where n, and m, are constants depending on the roots of R2, and n, and m, depend

18 -
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on the roots of S°. For negative h, the functions F, (v and G, (u) are
periodic functions of u with period 2Kl’ while Fo(u) and G2(u) are periodic

with period 2K2. For positive h, the functions Fi and Gi become logarithmic.

19
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SECTION IV - DETERMINATION OF THE GENERATING FUNCTION

The differential equations for the generating function, Egs. (39), may be
written

dW1 _ _
dql bql

.diz_za_‘ﬂzm S

(52)
da; %@y 4 _, 2
2
aw, .
do d¢o

These are ordinary differential equations, and integration again leads to elliptic
integrals. Before carrying out the integration, however, some discussion of the

limits on the integrals is necessary. It will be recalled that the generating function
was to be a function of six variables.

and the differential equations (52) give only three of the six partial derivatives of
W. Now the dependence of W on ;s 9o and © can be carried by the upper limits of
the integrals resulting from Egs. (52). These upper limits should be simply ;>
o> and ©, respectively. Recalling further that the momenta Pi are supposed to
be constants, and noting that three independent constants h, & and B already are
explicitly in Eq. (52), it is evident that these three constants or some three in-
dependent functions of them must be identified with Pi‘ It is convenient at present
to identify h, « and B themselves with P; and defer to a later stage in the develop-
ment any more complicated identification. If this is done, it now becomes obvious
that the lower limits on the integrals must be either functions of h, @ and B8 or

absolute constants. This is so first because W is a function only of 9, Gy, ©

20
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and the Pi’ and, since the integrals will be functions of their limits, only these
quantities and absolute constants may be included in the limits. Secondly, the
upper limits have already been taken as q;> 9y and ¢, and recalling that the
partials of W with respect to 9 9, and ¢ must be P;» Py and P, 1O further
dependence of W on 9ys 9o and © can be allowed without modifying the p's from
which the equations (52) for W were obtained in the first place. The only remain-
ing problem, then, is to select lower limits which depend only on h, @ and 8. For
the integral for Wl’ the variable is 9 which has bounds on its variation. The
bounds depend on h, & and B8, and since r,isa bound whether the energy is
positive or negative, it is a satisfactory lower limit. For W2 the bounds vary
with the particular conditions of the problem. However, for orbits approaching
both Earth and Moon, the bound S, always occurs, and will be selected as the
lower limit. For W3, the situation is a little different. The variable is ¢, and
reference to Eq. (43) shows that ¢ has the sign of @ and is thus monotone. Hence
any absolute constant is acceptable as a lower limit and 0 will be selected. 'The

generating function may now be written:

W(ql’ qz’ (p, h’ al B)=W1 (ql’ h’ a, B)+w2(QZ’ h’ a’ B)+W3(<p’ h’q 3)

9 q )

N 5 R 0 S

-chJr 5 d q, *“/2°Js , dq,+ao  (54)
1 q -1 2 l—q2

where W3 is integrable directly. It might be remarked at this stage that there is

an essential difference between this generating function and the'corresponding
function for the Kepler problem. The upper limits in the integral occurring in

both generating functions may be regarded as the coordinates of a point on the orbit.
In the Kepler problem, the lower limits correspond to the perigee distance for the
radial integral and to zero for the two angle integrals. This may be regarded as a
point on any orbit, since the angles may just be measured from the perigee point.
In the two fixed center problem however, the lower limits Ty, S, and 0 may be
regarded as a point only on a very special orbit -- namely, one which is simultane-
ously tangent to the ellipsoid r and the hyperboloid Sy and this tangency must
occur in the x~y plane, '

21
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To complete the canonical transformation generated by W, the Pi will be
identified with h, & and B8 as follows:

P, =P =h
P, =Pg =8 ] (55)
P, =P, =«

The conjugate coordinates Qi then become

24 24
Q=@ =W_c % U . B %dy
1 "%h oh 2 r, R J2 sy S
“dq q, dq
co. 23W __ ¢ 4 % o 9 99
W= 3 =" . R "VZ._ 8 (56)
r ]
1 2
;Q AW _ J2a 9 49 Jea (Y2 49
U =Q% = Fa c . 2 c | e

4 2

In differentiating the integrals in W there are really three terms for each integral:

one is the integral of the derivative of the integrand and the other two are obtained
by evaluating the integrand at the limits and multiplying by the derivatives of the
limits, The terms corresponding to the limits vanish, because the upper limits
are not functions of h, & and B, the integrands for the q and g integrals vanish

at the lower limits, and the lower limit of the ¢ integral is an absolute constant.

It will be noted that all the integrals occurring in Eq. (56) have forms -
identical with one or another of those occurring in Eqs. (44), (45) and (46) for
the determination of Gy» 99 t and @ as functions of u. The only difference is that
in reference 6, where the integration of Eqs. (44), (45) and (46) is carried out
in all detail, the lower limit on u was taken as zero. Here the lower limits are
2 2 .
roots of R™ and S".
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Of the three Qi’ Q 3 has a relatively simple interpretation if one replaces dq1
and dq2 by du in accordance with Eq. (44). Then Qﬁ becomes

u(q,) u(q,)
Q= - S 1 @ - % @

u(r) u(s,) (57)

= @) -usy))
since the upper limits correspond to a point on the orbit and therefore represent
the same value of u. Thus Qﬁ appears proportional to the variation in u associated
with a transit from tangency with a hyperboloid to tangency withanellipsoid. Since
the orbit is not, in general, periodic this statement does not yet uniquely define

QB. To arrive at such a definition, it may be noted that in terms of the canonical
variables P, and Qi the Hamiltonian becomes

(58)

H=h= P1 ,
so that the Hamilton equations in these variables are:

P1=P2=P3=h=a=;3=0 (59)
and *

Qa=QB=0’ Qh=1 (60)
therefore

Qa and Q 3 are constants and

Q, =t+const=t+C (61)

The values of h, @ and B may be obtained from a set of initial conditions. The
values of Q_, Qﬂ and C may be obtained from the initial conditions also, pro-
vided it is agreed that the q =1 and qy = S, are to be associated, say, with the
tangencies to the ellipsoid ry and the hyperboloid Sy closest to the initial point.
Other identifications of q; =1y and 4o = S, will lead to Q's differing from those
just defiped by multiples of the periods K1 and K2
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If one applies the same analysis to Q, and Q_ as used for Q, (replacing
h (07 B

dq1 and dq2 by u), the following expressions are obtained:

Q =t+ — ° q.% du - 1_0 0.2 du (62)
h 7—2_ lu(rl) 1 Ju(sz) 2
or .
.0 0
c =% q,” du - q,° du (63)
u(r,;) u(s,)
and
0 0
'\2a V
ol et ]
u(rl) ql -1 u(sz) l-q2
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SECTION V_ - ACTION AND ANGLE VARIABLES

The action and angle variables are conventionally defined only
for conditionally periodic systems, which means that for the two fixed
center problem the development can be made only for h <0, The

action variables are defined in terms of the generating function W, as

follows:

Rdgq

_ L oW - 1

170 & dq1“/2°§ Z-1

1

' Sdq
J2=§Z—W'dqz=ﬁC§ g (63)

4 1-aq,

J .—.f277 a_\_vd<p=21ra
° oq

where the integral for J 1 is taken over a complete cycle of variation

of q; - i.e. from ry to r, and back to r while that for J2 is over a

complete cycle of Jz from S to s, and back to 8- These integrals

can, for the most part, be reduced to the forms already encountered

as follows:
Rdq L2 dg
J. = 2c¢ (§ 1 . V2 ¢ 5'; R 1
1 2, 2_, R
9 9 (66)
4K | ! oy I
_ iy | Ko+ du
= ~/2c'l0 I_hq e - 8-, 2 (q12 - 1) _‘
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and its inverse is

— )
1 1 i U '
4 Kl(nl - 112) 4Kz(nl-n2) 27 (r1l - nz)
Jl/h E ay _ »\/_Z—n2 J2 n, 2 (n;m, -m, n,)
“ J1J2J3/ 4cK1(n1-n2) 40K2(n1-n2) 2jT c(nl' n2)
1
0 0 37
(74)
so that, finally
W, = t+ C fz_- n2 Qﬁ
1 4K1 (n1 - n2) 40Kl (nl - n2)
w. = t+C V2 ! le (75)
Y e L
(t + C) (m, +m,) V2 Qg (n) my +mny) Q
¥3= T 2mm, -ny 2T c (n, - ny) T

are the angle variables.
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A complete cycle of variation qq corresponds to a variation in u of

4 K Now the first term in this integral has the form of the dependence
of the time on ;5 and, referring to Eq. (50) it is seen that the: periodic
part F1 will vanish and hence the contribution of the first term to the
integral isShanl. Similarly the last term has the form of the 9y

part of the ¢ integral, Eq. (51), and will contribute - ¢ - 4m1 K,. The

1
8 term contributes just -./2¢c 8+ 4 K,. The only new integral to evalu-

ate is

4K

1 g du (67)
0 1

This integral, too, turns out to be expressible as a linear term inu
plus a periodic one, so that for the limits given, it contributes a term

J2 (u+ ') 2 4 K1 where £y is the coefficient of the linear term. Thus,
finally,

J1=8hn1K1+4A/2(u+y,)£1K1-4J208K1—4am1K1 (68)

In an exactly similar fashion

Jé=—8hn2K2+4J2(u—u')L2K2+4,\/20BK2—4am2K2 (69)

To obtain the angle variables conjugate to the action variables, it is
necessary to recall that the original condition imposed on the P was only
that they be constants. Identification of the P1 with h, @, and B is only one
possibility; any three independent functions of h, «, and B would serve as
well and, in particular, it is now desirable to identify P with J Now
the generating function W is g1ven in Eq. (54) in terms of 4, q2, o, h,a,p,
and 1"1 and Sy The roots ry and Sy are, however, functions.of h, & and
8. Now if Eqs. (68) and (69) together with the third of Eqgs. (65) be inverted
to express h, «w, and 8 in‘terms of Jl’ J2’ and J3, it will be possible to
substitute for h, ¢, and 8 in W to obtain W as a function of 9 4> ©, J
J,, and J

9 3° It should be remarked that the inversion to obtain h, o, and 8
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in term§ of Jl, J2 and J3 is not an easy task since the coefficients n;, Ny, 1‘1'
12, m,, m, are very complicated functions of h, ¢ and £. Nevertheless the
procedure is possible in pripciple and the angle variables w, conjugate to. the
J's are given by the partial derivatives of the generating function W with re-

spect to the J's:
w = W . (70)

i 0d;

One may obtain expressions for the W without actually performing the inversion,
by writing the derivatives of W with respect to J i in terms of its derivatives with

respect to h, o, and f3:

_3W__ 3W 3h AW da W 3B
1733, T %k 33 "o 33 T 3B 87

w

1)
o 3h e, o 238
=% 33, "% 35 79 a

from Eqs. (56) defining the variables conjugate to h, « and £. Or, recalling
Eq. (62) for Qh’

wi=(t+c)'aa_Jh.—+Qﬁai§L. +Q aa‘ (72)
1 1 1 ’

where C, Qa and QB are constants.

The derivatives of h, & and 8 may be expressed in terms of the n's, m's,
£'s and K's occurring in Eqs. (68) and (69) by first obtaining the partials of the
J's. with respect to h, a and B from Eqs. (65), and then inverting their Jacobian

matrix. The results of this calculation for the Jacobian are

PERRAN 4n, K -2/2 cK,; f4m1K1-
‘J\hﬁa/= -4 n, K, 2/2 cK, -4m, K, (73)
0 0 21
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SECTION VI - CONCLUSION

To complete the solution of the restricted problem, it is now necessary to
express the disturbing function H in terms of the action and angle variables.
This is a formidable problem. The disturbing function is given in terms of >
49> © and their conjugate momenta in Eq. (34). The momenta are given in terms
of Ay dor @, h, o and B by Egs. (39) so that H2 may readily be written in
terms of these variables. Starting from the other end, the action variables J 1
and J2 are given in terms of complicated functions of h, «, and B [ Eqs. (68)
and (69) ] while Jq is just 27 o [ Eqs. (65)]. The angle variables w, are
given by Eq. (75) as linear functions of Qh’ Q , and Q 8 with coefficients which
are functions of h, &, and 8 similar to those occurring for J And Qh’ ch ,

and Q}3 are related to dys 99s @ and h, a, and 8 by Egs. (06). Thus, the following
procedure would yield the information necessary to write H2 (wi, J i):

1. Express Kl’ K2’ I,l, £, n, n,, m 1 Dy 38 functions of )

2
h, a, and 8.
2.
Y
27

Invert Eqs. (68) and (69) using the results of step 1 to obtain
h(J)) and B(J).

3. Express Kl’ KZ’ )Zl, ﬁz, n;, N, m,, m, which are functions
of h, &« and B in terms of Ji'

4. Invert Eqs. (75) to obtain Qh t + ¢, Q and Q B s functions
of the angle variables W, and- Kl’ KZ’ zl,l g» Dy Ny, my,
and m,.

5. Use step 1 to o!atain Qh’ Qa , and QB as functions of w,
and Ji'
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6.. Invert Egs. (56) to obtain Qs dg» and ¢ as functions of
. Q
Qh’ Qa» Qﬁr h) a, a-nd o

7. In the expressions for 450 Ay and © obtained in step 6
replace Qh’ Qor’ and Q,B using step 5 and h, «a, and R
using step 2 to obtain ;5 dg» and ¢ in terms of W

and J.. .
i

8. In the disturbing function Hy @ 990 @ h, a, B), re-
place q, q,, and ¢ from step 7 and h, «, and B from
step 2 to obtain, finally, H2 (wi, Ji)'

Steps 1, 2, and 6 are the difficult ones in this procedure. It is relatively
easy to write Kl’ KZ’ 11, 12, Dy, Do, m,, and m, as functions of the roots of
the quartics and two intermediate parameters which are related to the roots of the
quartics by transcendental equations. The roots of the quartics are, of course,
functions of h, a, and B, but it is not easy to write out these functions explicitly.
Thus, even step 1 is quite difficult, and to perform the inversion required in step

2 in closed form appears nearly impossible.

It should be remarked, however, that, at least for certain types of orbits,
it should be possible to get fairly good approximations of these steps. For a lunar
orbit which starts from the earth, closely circles the moon and returns to the earth,
it may be shown that c)z2/202 is very small. This is so because such an orbit has
very close approaches to the line of centers, and recalling that « is the angular
momentum about the line of centers, it follows that & must be small. If o were
zero, two of the roots of the quartic:s would be £1 and the other two are obtained
in terms of h and B by solving quadratics [see Eqs. (40) and (41) ]. Now it is

possible to obtain the roots of the quartics for small « in terms of those for zero

a1l .

« in a series of powers of a. Thus for small «, it is easy to obtain fairly simple
approximate expressions for the roots in terms of h, a, and 8. Further, it turns
out that the transcendental equations to be inverted for the intermeciate parameters
are very well approximated by just two terms of an expansion. Thus, it is feasible,

for lunar orbits, to obtain a good approximation to steps 1 and 2.
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The complete elliptic integrals
X q r >
Ju e P/ g4y

and similar ones for 9> have forms very similar to those obtained by Vinti(s) in

* his model for the oblate earth. Vinti used oblate spheroidal coordinates for his

model and the close connection between his development and that given in this
report for the two fixed center problem was first pointed out by Pines(g). The
Vinti integrals have recently been evaluated approximately by Izsak(lo) using a
technique developed by Sommerfeld(ll’ 12) for evaluating certain contour integrals
of functions with branch points. The method is to expand the integrals in terms of
a quadratic function and evaluate the series of resulting integrals about contours
enclosing the roots of the quadratic. The values of the integrals so obtained are
explicitly in terms of the coefficients of the quartics. For the mefhod to be valid,
the expansion must converge over both the original and the final contours. This
condition is satisfied for Izsak's expansion of the Vinti integrals. However, none
of the obvious expansions for the two fixed center integrals converge over the final

contour.

The greatest difficulty in following the procedure for obtaining H2 is in step
6. Egs. (56) relating Qh’ Qa’ and QB with dy» 9y and @ are transcendental
equations and it is hard to say how well their inversion could be approximated by

some approximation procedure, such as the Lagrange inversion theorem.

It should be remarked that it would be possible to write H2 in terms of Qh’
Qa , QB' h, &, and B rather than in terms of LA and Ji' This is not done in the
Kepler problem because the relation between the original coordinates and time is
best achieved by a Fourier expansion in the mean anomaly rathef than in time.
An expansion in time would involve far more complicated coefficients. Which set
of variables will turn out to be better for the two fixed center problem is hard to
predict at this stage. '
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DEFINITION OF SYMBOLS

Vehicle position vector

Distance to vehicle

Velocity vector of vehicle

Speed of vehicle

Perturbation displacement vector
Coordinate functions

Mass parameter

Time

Time at which the natural end point is reached
Magnitude of thrust

Direction of thrust

Mass. of vehicle

Lagrange multipliers or adjoint variables
Semi major axis

Mean motion

R R,

Incremental eccentric anomaly
Functions of 6 defined by Eqs. (48)
Adjoint variables defined by Eq. (18)
State variables defined by Eq. (18)
Residual vector defined by Eq. '(19)
Variational parameters

Defined by Eqs. (21), (22), (23)

Partial derivatives of state variables as defined by Eq. (25)
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Subscripts

u

Superscripts
k

Partial derivatives of adjoint variables as defined by Eq. (26)

Defined by Eqs. (27), (28), (29)

Unperturbed solution
Value at the initial time to
Value at the natural end point

Values corresponding to variational parameter set A or B

Value at the kth iteration
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REPUBLIC AVIATION CORPORATION
Farmingdale, L. I., New York

TWO-POINT BOUNDARY-VALUE PROBLEM .
OF THE CALCULUS OF VARIATION .
FOR OPTIMUM ORBITS

By Jack Richman

SUMMARY .
This report contains a description for the solution of the two-point
boundary-value problem of the calculus of variations for optimum orbits.

The method employed uses Lagrange multipliers and Pontryagin's
maximum principle to obtain the decision functions.

In addition, two differential correction schemes are described. The
first scheme is a "method by forward integration, ' and the second is an
alternate "method by backward integration" that attempts to reduce the

_difficulties that might be encountered in inverting a differential correction

matrix.

‘The optimum orbit is determined by a perturbation method similar to
that of Encke and accommodates hyperbolic as well as elliptic orbits. The

equations necessary for the generation of a digital-computer program are ’

/Mﬂ“ »



i

»

Por—

N

E

N
i

-

..

INTRODUCTION

The usual methods of solving the two-point boundary-value problem of
the calculus of variations involve the use of iterative gradient techniques. With
. these methods, the desired solution is reached only after making a great
number of incremental variations and examining the changes that these varia-
‘tions cause. As one might expect, the rate of convergence for this method is

very slow. -

Another method of solving the two point boundary value problem of the
calculus of variations, which will be described in this report, is one where all
the decision functions and trajectories that are being used are extremals. This
method uses, in addition to the state variables Lagrange multipliers or
adjoint variables that play the key role in deciding the optimal direction of
thrust, time of thrust duration, etc. The adjoint variables also define the
natural end-point conditions by which the two-point boundary-value problem
can be terminated. This natural end point, in general, will not be the desired
end point. A differential correction scheme provides the means of obtaining
another optimum trajectory the natural end point of which will be closer to the

desired end point.
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EQUATIONS OF MOTION

In a Newtonian system, the equations of motion of a particle that is in the
gravitational field of N attracting bodies and is subject to other accelerations,
such as thrust, drag, oblateness, radiation pressure, etc., are given by

o N R
l o .BV?'Z “p ::’BK *2 £; , ®
I i

- Kr
K=1 VBK

i.
!
!

. ' "I‘he problem that will be considered here is one in which the vehicle is in the
gravitational field of only one body and is subjected to a variable thrust k. In

this case, Eq. (1) is reduced to

: Rk
R=-Hb 5+ T @)

[ r

-where -T is a unit vector in the direction of thrust. The magnitude of the thrust

is taken to be proportional to the mass flow and is given by

@)

k = -cm
‘The constant of proportionality c is related to the more commonly used constant

Tspecxﬁc impulse Isp by

)

DERIVATION OF OPTIMIZATION EQUATIONS

In the derivation of the optimization equations, it will be assumed that the
vehicle can have two possible values of thrust, either k = kmax or k = kmin' The

‘ magnitudes of these two thrust values may differ with each stage.

' Minimum-Fuel Condition

The value of the integral to be minimized is given by

1= j:F.dm - J':F - Mt | )

(] o
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and the conditipns of constraint are given by

LR

+ -k -0
m—

r

0 (6)

R -V

m +l—(-=0
c

Because these conditions of constraint are satisfied at every point on the trajectory,

we may rewrite Eq. (9), without changing its value, as

t

F KR k . k

I=J‘t -+ ) (V+-;3—-ED +Z-@-¥)+a(m+3)]dt
(o]

@)
t
=J’FL(R,g,y,y, m, m, A, y, 0) dt

t
(o]

where A (), Y(t), and O(t) are undetermined Lagrange multipliers that are chosen
so as to determine the optimum decision functions required to solve the problem.

Applying the Euler Lagrange equation

d ,oL L _
dat (aqi) 'F(E =0 (8)
to the state variables, results in the following set of equations:
A+y =0
3U@" ) '
€ 2 R=0 : 9)
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Equations (6) and (9) can be combined to form

R= -_I.i—_‘,+ l(_ T
—_— r3 m —

. _BA Bu@-2)
é_- r3 + 5 B (10)
r '
k=~-cth
0':_1—{-2-_)_\_. l‘
m

t
Aoy | F =0
t
(o]
t
7 613_|f= 0 a1
(o]

t
(0 -1)6m ‘ F_o
t

Because variations in the position and velocity at the end points are zZerxro,
the first two expressions of Eq. (11) yield no additional information about the
values of A and y atthe end points. The variation of mass at the final end
point, however, is not zero, i.e., 6m (tF) # 0 . Hence, the only way to satisfy

the third expression of Eq. (11) is to demand that
oltp) -1=0 (12)

to completely define the extremal

ation that is necessary
and the duration of this thrust.

The only additional inform
optimum thrust vector

is the determination of the

For the determinatiog)of this decision function, we make use of Pontryagin's

"Maximum Principle, " (1,2)pich states that a necessary condition for an integral
of the form of Eq. (7) to be minimized is that the Hamiltonian be a maximum. The

Hamiltonian for this problem is given by
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For H to be a maximum, the unit thrust vector T must be in the direction -

of A, or
N .
T =—o (14)
RY
Therefore, the coefficient of k in Eq. (13), which is defined as the switch
function, becomes
Y |
o .¢
S =0 pS | (19)
The necessary conditions that must be placed on the magnitude of the thrust for
H to be a maximum are the following:
) if >0 then k=k )
, max
(15a)

if S< 0 then k=kmin

Furthermore, when thrust is applied, it is desirable to make the switch function
as large as possible. This can be accomplished by allowing the mass to be as
small as permissible, which implies the obvious condition that any empty tanks

or other unnecessary weight be dropped as soon as possible.

| ' Minimum-Time Condition

In this case, the value of the integral to be minimized is given by

t

t
F rFT - MR . k.
I=Jqt dt=Jt L1+_'(Y+ 3 'ED*I'@’Y)*““’”E)J‘“
r
o o
(16)

tion of the Euler Lagrange equations and Pontryagin's Principle lead to

the exact same results as the minimum-fuel condition, with the exception of one
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of the namral-boundary conditions. In place of the third expression in Eq. (11).
we now have

t
obém F . 0
t .
o
or , . 17)
o (tF) =0 .

Therefore, for the "minimum-time' condition the natural end point occurs
when 0 = 0.

ITERATION SCHEME

General Procedure

The problem is to generate a set of initial adjoint variables such that an
optimum orbit can be computed where the natural end point matches the desired
end point. (The end points are, of course, given by terminal values of the state
variables.) With initial values of the state variables specified and an estimate
for the initial values of the adjoint variables, an iterative method can be used to
solve this problem. Improved estimates for the initial values of the adjoint
variables can be obtained by computing the residuals or differences between the
values of the state variables at the desired end point and the natural end point
and then applying a differential correction matrix to these residuals. We define

the {r'} , {A}, and {6 (tF)] vectors as

[« 3 . r_ix)
y 5
z -Az
{r} = <x g , {(A}= <Ax> . 1s)
y )3, ‘
z Az
. . - )
and (x (tp) - XE )
ytg) -YE
z(tp) - zE
. (Bapl= (% ¢p -%g ? a9)
' y tp) -YE
L (tp) - 2g
km(tF) -mEJ
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‘where the subscript E denotes the values of the state variables at the desired
end point.

The Kth approximation to {A (to)} is designated by {/\(K)(to)} , and it is
desired to obtain an improved value of {A(K+1)'(tF)} . The procedure is as

' follows: using {A (K) (to)} in the integration schgme, the position, velocity

and mass at time t_,, as well as the residuals {6.(K)(tF)}, are computed; and

F’
the initial values of the adjoint variables are then changed so as to reduce the
- residuals,
(K+1 - [H® (K)
(Dt = {a (to)} +{ax (to)} 20)

where {M(K) (to)} is to be found by using a differential correction matrix.

Methods for Obtaining the Differential Correction Matrix

Making use of Eqs. (14) and (18), the first two expressions of Eq. (10) can
be written as follows:

ry1={adrh WD} or  r=aqulr), D

21)
Al={p({r}, Ah} or A =p;dr}, A}
',._"w_h.ere.
q1=
q =¥
qg =2
4 3 Py
X
q =-HL K ¥
5 1'3 m !)\.
: A
bz kK 2z
q6 r3 m I}‘I
= -k
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Taking the variations of Eq. (21) with respect to a set of parameters
{a} =(@s ag, .- a,), we find that

3 (¢1=[F1(al+[G1[A]

& [(AJ=LFI* (A)+ 3 10¢)

(23)
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where

(0= 3454 =

Ix(t)

ox(t)

ox(t)

dx(t)

ox(t) 3x(t) _1

aaz

oo,

10

oty

aa5

o g
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Method of Forward Integration. Two convenient sets of parameters to -

‘work with are the sets that consist of the initial values of the state variables

and adjoint variables, which are, respectively

{a}A = {r (to)}
and ' (29)

(ol = {2 )}
Using these sets of parameters, Eq. (24) can be integrated "forward"

simultaneously with equations of motion, using the initial values of [®] and
[A] as given by

[‘I’A(to)] =1 [°B-(to)] =0

and
| i ®0)
XN IR (At ] =1
The differential corrections are obtained by solving the system of equations

{Ar (tF)} = ‘:‘DA(t F)] {A" t)} + [‘I’B“F)] {A "‘to?}

(srep}-Tnatp] fareo Tl (aeg})
and, because
f {Ar (to)} -0 and {Ar (tF)}= {é(tF)}
we find- - 1
(reg} =yt ] o) |

An interesting feature of this differential correction scheme is a tendency
for the inverse of the differential correction matrix [ch(tlF)] to become more

" and more singular as the time arc increases. This tendency toward singularity -
- is a problem of utmost interest.

Method of Backward Integration. If the use of double-precision tech-

‘niques fails to provide the required numerical accuracy for the inverse of the

matrix, an alternate method of generating the differential correction matrix
can be used. This alternate scheme employs a method of '"backward" inte~
gration to provide a differential correction matrix consisting of the sum of two

' matrices, only one of which requires inversion to produce the differential

corrections, In this case, the two sets of pardmeters consist of the final

14



¢

.
i
|
.
.
) l
I| .

values of the state variables and adjoint variables, which are, re-
spectively ' '

ty=(r 0]
(alg = {2 }

Using these sets of parameters, the variational Eq. (24) can be inte-
grated ""backward." The procedure is as follows: the equations of motion are
integrated '"forward" until the natural end point is reached; the residuals are
computed; and, then, Eq. (24), together with the equations of motion, are
simultaneously integrated 'backward" starting at time tF and ending at time

t,» using for initial values of [®] and [A]:

and 33)

= 1
[‘I’A("F)] =1 1% Cp) | =0 |
and (34)
r r -
LAy (g J=0 [Ag ¢ ]=1
The differential corrections are obtained by solving the equations
r T r
{axeg}=[as09] {ar o} +[Age ] {220}
(395)

{Ar (to) } = [QA(to)] {Ar (tF)}+ [QB(to)] {A)‘(tF)}

and, because, in this case,

{Ar(to)} —0 ad {Ar (tF)} = {s (tF)}
solving Eq. (35) for {AA(t,)}, we find that

{axey) = [[As¢01-TAgE) eyt 17 0,691 ] {860} G

Convergence of Iteration

Several difficulties are connected with the above iteration scheme, and
some of them might be crucial enough to cause divergence of the iteration.
These difficulties might arise for the following reasons:

1. In the variational equations, the variation of burning time
is not accounted for. ‘ .

15
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The inversion of a matrix is required in both methods to
obtain the differential-correction matrix. Furthermore
this inversion becomes more involved since the residual
m(tg)-mp of the vector {é(tF)J is unspecified and requires

additional computation.

The change At in the final time has not been taken into
account. Howeéver, this should be included by considering
the additional transversality condition which results in

{a}- {r}=0.

DIGITAL PROGRAM

Trajectory Equations

The equations that completely define the trajectory have been described

previously.

The order in which these equations are programmed for the

general case (with thrust) is as follows:

A
s=(|—ri7l'%) >0 k=lkyax
<0 k=kmin
. k
m=-g
. k|A]
=72
m
2 (1= (F1le]+ [GI[A]
LAY - (FIVTAD + (9106 | e
BR k A
R= L= 4=~ ——
0 -r?—+m lkl

16
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These equations are integrated until the natural end point is reached. At that
time, the residuals are computed and compared to a predetermined set of
maximum permissible values {¢}

If Gj(tF) < cj for all the residuals, then that trajectory is the solution -

to the two-point boundary-value problem. If 6j(tF) > ‘j for any of the re-

siduals, then a differential correction is applied to the initial values of the
adjoint variables as described previously. If the alternate differential correction
" scheme is used, then a '"backward" integration is necessary before any correc-

tions can be applied.

Numerical Procedures

The differential equations of Eq. (37) can be integrated numerically with
a Runge-Kutta fourth-order method. To reduce any accumulation of error
that might result from a number of step-by-step integration, however, it is
_convenient to write the equation of motion for the high thrust case in the form

R=R +§ (38)
The velocity and position vectors can be written as
R=R, +¢&
(38b)
B = B'u +'§.
- where R is the unperturbed solution and £ is the perturbation.
In this method, R is takenas
ko ool
Re*mLi="m I 39
and
.o, k '
§_='E321+E[I _Ei] ' (40)
: T ,
: _'Eq. (40) is integrated numerically, and the solution to Eq. (39) is
R, = fR(t) +ER ) +bI()
41)

R =fRE)+& 'g(ti) +hT ()

17
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where

g=t-t

h= —c{-l%- [m log m - m, log m, - (m-mi)]-(t—ti) log mi}

e
"

0

1

g
"h=-c(log m - log mi)

m=mi+(t —ti) 1

" (the subscript i refers to values at time t,)

. This perturbation method, or Encke scheme as it is commonly called,
will reduce inaccuracies occurring in numerical integration, provided that the
perturbation terms are small compared with the total solution. Whenever
these perturbations become too large, a rectification takes place, i.e., an

' initialization occurs in which the values of the variable at time t now becomes

the values of the variable at time ti. A rectification takes place whenever any

~ of the following conditions occur:

£ o e s
I = > ‘pos (position rectification)

E . T

| ¥ 1> el (vglocxty rectification) . (42)
V2T - T, > € (acceleration rectification)

SOLUTION OF EQUATIONS FOR THE COASTING STAGES

The solution of the equations of motion and the Euler Lagrange equations
can be derived in clgsed form for the coasting period. In the no thrust region

(k=0), the equation of motion reduces to .
R= -5 (Kepler problem) 43)
r
18 .
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The two-body orbit that results from the solution of Eq. (43) with the initial
conditions ’

B(ti) = Bi
. . (44)
B (ti) = Bl
can be written as a linear combination of R, and .Bi as
R=f R; +8R,
. (45)
R=1{ Bi +g Bi

The coefficients f, g, f and g are obtained as follows: we represent the initial
conditions by the set of elements

v2 -1
- (5-5)
; #

di=R; R,
u s
= (elliptic)
a3/2
1/2
n= —E—gi (hyperbolic)
. (-3)
This results in the following Kepler's equation
T di :
n(t -t) = 0-sin 6+ — sin 6 + — (1 - cos 6) (elliptic)
a
1 J;Ta
(47)
r d

n(t - ti) = ginh 6- 6 - 7:— sinh @ + (cosh 6-1) (hyperbolic)

where 6(t) is the incremental eccentric anomaly E- Ei’ the functions fl f2

f3, f, are defined as

19
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f1(9)=9-sin9
_ f2(9)= 1-cos 6

. f3 =8in 8 = 0- fl(e) (e].llpth)
f, = cos'6 =1 -1,(6)
(48)
fl(e) = sinh 9 - 9 ]
£,(6) =cosh 8- 1
(hyperbolic)

f3(9)= sinh 6=0 + f1(6)
f4(9) =cosh =1+ f2(6)

and the solutibn of the two-body problem for both elliptic and hyperbolic orbits

visgivenby'
|a]
f=-?f2+l
g=-1f +(t-t)
' r o0 d;
T -=f f4+—af
ORI IV
. lal (49)
. k 1 Ja
f='/m Tt
g=-—|-%Lf2+1

For the non-thrust case, we also can solve for {A} in closed form. The
following is a derivation leading to this closed-form solution: the differential

equation for the adjoint variables are written as

d *
EASERIEIS 50

20
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where [F] is defined by Eq. (27); the variational equation for [&®] reduces to

gdt- (¢l =[FI[¢] (51)

taking the transpose of Eq. (50) and postmultiplying by [ ¢], ylelds

(AT [e1-- (Y (FIle] (52)

. *
premultiplying Eq. (51) by {A} , yields

(A} & 1e1= (Y IF) (9] 63

comparing Eqs. (52) and (53), we see that

(A2 o)+ F (A [01=0

or

4 [a¥re1]=o 64

- . )
© - Eq. (54) states that {A} [¢] is a constant and, therefore, can be written as

Do’ eol =ef (o] 4 (55)

where tK is any fixed time in the no-thrust interval; solving Eq. (55) for {(xl,

results in

Di=[efo] ™ Lot ] (rep ) (56)

In the case where the set of parameters {a ]} corresponds to a set of the state
variables {r}, the matrix [$]canbe written as

ENCISERGESIIER o | (67)
taking the transpose and then the inverse of Eq. (57), leads to
["*(‘) ]-1 = {4’: - tK)] -1 [ ;P; ) ]'1 | (58)
21
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and combining Eqs. (56) and (58), results in

. b 3 _1 '
(A )= [@ s (- tK)] {A (ty) } (59)
which is the closed form solution of {A(t) }.
The elements of the [_<b At -t K)] matrix are obtained by differentiating

the Kepler orbit elements with respect to R(tK) and R (tK) The elements of
3T_(t) |

‘- D g =1 .
[éA t tK)]pq arq(tx) , with p, g=1, ...., 7, are as follows:

90X, (t) ox.

i _ i 3|a| v -

St == o103 Xoj ["i Xoi ~ tK)xoi:}
VK 0j T,

Ialx.
r ey se- tK>+g+l -a- 2]
0
1 a%

]al . 1
- k.=-X )X . .
M B&i=%o1) 0j +f2(1'0 * |a|) ro3 %o1%0j

(60)
() A,
ak.(t,,) ax . 1]

—l—lonl_x X ;- (t- tx)"m]

1}

A

lalxy
+ ——l(x -X )-3(t tK)+g+|-£-]3-f]

2
_la] X

a
i %oi®i%ot) T +ur” T2 ¥oi*o;
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X (t) ox. . plalx . r.-r r r r -
. i s _ o _— = =0 e 0 _.0
A BT b S T ]L“‘ tW 8+ Tam L "Ta] )3 )
'K 0j rr,
la|x . ' r-r r, :
+ -—-——J—r X+ -X) 0 ]fz +-F(xi -k xojf

- 'Ll f (_—'*’T—T) Xoi *oj —1731'(’( “Xop) xoj[g Ta- T_T) f‘J

To
+ (60 continued)

kK. (t) oK, |a|x
i _ i _ oj o
T =axoj‘g5ij‘ 3 [" +rkg-X 1) m ][3“ )+g+]a]n 3.1
r-r
+'L3Lf2 03[ + e X)) .j _(x -*ox) o;[ug+ r f4]
T, . al. .
+T&__(xi-i‘oi)xoif"T'fxoixoj

where i, j=1, 2, 3 correspond to the X, y and z components and

i

Xy = x(tK).
r, = r(tK)
r =r()

The inverse, [@A(t - tK)]-l, can be obtained from the above expression by .replacing

t - -t . r = r.
0
66—~ 6 X - X
(o}
r-r X = X
o 0o

This results in.

£, =~ f g
b~ 15 g~ 8
£y ~ 1 f oot
=1 g~ f

23
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NOTATIONS
A = origin of rotating coordinate system
¥
: A = position vector from barycenter to center of the

rotating system

ETTT e wr

A = the position vector of A relative to the earth

Gl G 0 G A O OGN O BN N O OGN N N a8 A =E
[
[
It

E = position vector of the earth relative to the bary-
center at t=0

E = position vector of the earth relative the bary-
. center, but rotated through an angle T
AE = E'-E
J = Hamiltonian (Jacobi integral) for the restricted
problem
J* = difference between the restricted Hamiltonian

and the two-fixed-center Hamiltonian
the part of J independent of ¢, 8, and ¥
J = the part of J that is a function of a, B, and ¥

J = Hamiltonian equivalent to J* but written in terms
of two-fixed-center coordinates and momenta

J*x* = time dependent part of J*

J = Hamiltonian of two-fixed-center problem

) = length of position vector from earth to moon
= position vector from earth to moon

position vector of the moon relative to the earth
in the rotating system

el e
[

= velocity of moon with respect to the earth (i X L)

SRR

= G X :I; in the rotating system

o
3
n

momentum canonically conjugate to R A



N

® ¥ W

> ®_ T

[

momentum canonically conjugate to EA

position vector relative to a point fixed in inertial
space e.g. barycenter

position vector relative to the earth
position vector relative to the moon

pcsition vector relative to A in the rotating system

position vector relative to the earth in the rotating
system

position vector relative to the moon in the rotating
system '

position vector from barycenter to earth
position vector from barycenter to moon

position vector relative to A in the rotating system
for the two-fixed-center problem

position vector relative to point at A

length of position vector relative to earth
length of position vector relative to moon

a specific period of time

time variable

constant coefficient of L in composition of A
constant coefficient of {« in composition of A
constant coefficient of & in composition of A

the angle of rotation of the coordinate system
about the barycenter after a time T

gravitational constant of the earth
gravitational constant of the moon

angular velocity vector of the moon about the earth

vi
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w = the magnitude of angular velocity §

gradv = gradient with respect to the components of V taken
- as coordinates

Subscripts

B = vector relative to the barycenter

0. = initial value

Superscript

dot over quantity = first total time derivative

2 dots over quantity = second total time derivative

vii



REPUBLIC AVILTICY CCRPCRATION
Farmingdale, L.I., New York

Approsimnation ¢f the Reswicied Provlem

. by tae Two-Fixed Center Prouvlem

By alary Puyue

SUMMARY

| o AT

In tais report, ajpermrbatics tieory oi L two-lived-center_problem
leading to-an approxination for e restricted-lrce-sody problen_u:]is developed.
It makes use of a generalizetica o tie method develeped at MSFC by Schulz-
Arenstorif, Davidso:n, wnd Soeriin . {4)  The derivulions are carried out in 2
coordirate system rowxting asour 2 sccelerated origin, and the generalization
consists of the selection of s orisln in sucih a way as 1o minimize the etfects
of the non-integrable terms in tic eriurbation couations. Tae results of some
numerical calculations are presenicd. .

INTRODUCTION / 4

The eguations of motion for a veaicle moving in the gravitational fields
of the earth and moon are: |

|
b

i
o

to
i
'
©
|
]
-

1)

(9]
(VW]

0




where R,, R,, and R are the positlon vectors of tue vehicle referred to the

carth, the moon, and a point fixed in incriinl snace, respectively. Lower case
letters denote the magnitude of "w corresponding veciors. In this report it
will be assumed that the earth and woon ave nloving in circles, under their
mutual gravitaticnal attraction. wuil = ﬁl.ur cummen center of mass. This prob-
lem is the restricied L.m:‘cc—bo;;;' e fixed point may be taken to

be the center of mass ol Li¢ S Lo0l, A wopY oximation to the solu-
tion of the restricicd problem wiilwe ;o“_,w fnoter s ¢. e Ko \n solution(3) to

the Euler problem of nvo lixed ceaitvs 6f growviutiva., Tac nacthod will, in many
respects, 1follow closely thut deveiosed by :‘:11;;;_~_'-.;'L':5tori£, Davidson, and
Sperling. (1) Ir their proceaure, tic Hrosioit s (rooisloraed 1o a coordinate

system rotating goou Lac conter o0 tiass, o Liis ‘u:.;;...li'lo' system, the Euler
problem is taken as the basis of a perturnution tneory. Using tae initial con-
ditions of the Euler problem as a sct of cunonicaly wbl(,:, it is shown that\~

R = = urad J=
> »)

Lo

and s

—PO = - grad Ry J* '

where BO is the initial position vecior in tac rotucing sysiem, _130 is the momen-
tum vector conjuzate to _I_{O, and J* s the difrereace boetween the Hamiltonian for
the restricted problem (Jacobi integral) and thut for the Euler problem, and is

given by v
Jx = O . R x P -J&r, 3
The solution of the restricted prc‘ol c.ais given in terms of an osculating two-

fixed center problem with varying ioitial conditions. I J*% were zero, the
equations for R. and PO could be integratea dircctly. I the Schulz-Arenstorif
Ry £

thcory, J** does not vanish and, in faet, contr ”tcs appreciably to the vari-
ation of 3 wad P if the time interval over which the intcgration extends is too

large, or if ei:‘;‘er [SNE c-;zrtn or the moon are approached closely by the vehicle
during this timec interval. ‘

It is the purpose oi this report to show thut the ¢ifect of J¥% can be reduced
1r\ At rotating gvstent o S 1o conter At mass of

C A ATt A thad

o (S
DSLALL VL, wedd Vidmdil AV e b A vciviany

Ll

the earth and moon. Ia thc coursc of this deve.osment the datails of the Schulz-
Arenstorff mcthod will be given, wnd the coordinaics 1or a cenier or rotation will
be determined so that J=* und its first time derivative vanish initially.

Ty
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PRELIMINARY CONSIDERATIONS

Since the two-{ixed center roniom will Le wsed as the basis of a pertur-
bation theory, it is necessary That L.:;- carih ond the moon be fixed in the ro-
tating coordinate system. This lmpiics that e orvizin of this rotating system
must be fixed relative to the carin wad the i, ¢ most general of such
points will rotate about the baryciiics Wit the wngilal v cioci ity of the earth and
the raoon. The radius vector from iie baryceater to the origin of the rotating
system can be expressed as

A = oL - 2D - L, )

KT

ci the moon

S voelors, respoctivedy,
I. he angular

where L and L are the position and velocis
relative to tae carih in w noa-ruluiing coordinaic sysieny, and [

Y
is

velocity of the moon whout the curih. From inc Cefinition of Loana L it is ap-
parent that both vectors are aews ;\;.ctiu**j of L, I-‘;;:;';Ahx* ore, L und L
are constant vecrors in thC Ioutin : is consiant in bo@ the
inertial frame and tace rotuting sysie
A be fixed rclztive to the cu L implics that &, 2, and 7 are
numerical constants. Thac consiaii 2 omay be choscen arbitrarily, for the point
A is used to determine an axis of rotution oricnted in the 2 dircction, and all
points with the same ¥ and 7 will lic on the same axis independently of 3. Thus,
2 may be taken as zero without loss of generi lity, and it will no longer appear

rJ
in the formulation. Rcierring to Figure 1, itis ;pen that R, R,, R,, L, and

Pe

B—A’ the position vector of the vehicle relative to A, satisfy the following re-
lations:

R, =R, *Ry -4 =B -(a- 75— L-7L (©)

(10)
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First, it is necessary to eliminate R ivom Eq. (4) ¢ nd obiain the equations of
motion in terms of Iia, Ry, and 12,. To <o tais, one may differentiate Eq. (10)

-9

twice with respect to time:

=R, ~alL-vL . (11)

S

=~

Now, the condition tiat the earis anG moon racve in circles uacder tieir mutual
gravitational attraction means wat

b

l: =

\_I;

A

and

xL = -(c- = (12)

=
1]
[O

Differentiation of Eq. (12) (witih . = 0, as L .us consiant magnitude), enables
us to write Eq. (11) as

H R = R, - =——= ~L-7L , (13)
’ —_ A Y] - .

R R,

. —l - ,/ .
Ry=-s—g -k 5753 (0L-7L). (14)
1 r, i

~

It should be noted that, at tais swge, the coorcisaic system associated with A
is an accelerated sysiem since e origin has unilorny circular motion. It is,
however, no: a rodting sysiem yet - that is, tae coordinate axes remain parallel

to the ineriial axes ut the barycenr.

Tie next sicp is to transiorm 10 rotainy coorainties about A. The vectors

in this system will be denoied by bars, and the equations of motion become

,/
-0Ox Ox

Nx R 5
\\_-_;‘ BA/' (lD)

1=

I
==

o
fosf

|

.-

[

- _"_ . “ . ~ -+ 3 : -20x
K 3 PR 7 L) QxR

It should be noted that, in this rowiing coordinate sysiem, the eartn and the moon

are fixed, with position vector L of the moon relalive 1o tae earth as a constant

vector. The vector L does not represent the velocity of the moon (which is zero),



but is a vector mutually perpendicular 0 L
bars over the vectors. As the rowm:inz system has

of course, that O and Q are identical.

A constant of motion

i 2 QL

as L and

J

TAr

L3¢ DUCwlent in the

v

-

rola

and satisiying Eq. (16) with
angular velocity Q, it follows

o

B‘_\: L=y

1
.

v

2 2
Lo
Yo
- N -
X R .

the constant of motion by J:

[

obtained hy dotting Eqg. (153) with .
fixed in this system, so taiat 2
ﬁ = :_:E = i .
=A =1 =
= 2 . __.'
5 d s R, - &,
* = ! = -
A atr 2 . - 5
l“‘
U R, TevR.-L
- VO d LA . e
3 N USRS
i s ” ’
= L 2 L " R
cat -y r, o N
L ure consuint vectors. Denoting
2
- *;.‘ wd !_’/ "y :_'/ ;o= — _
SR, - - = - —=— gR.-L %R
T A I‘l 5 3 =A =

It may now be shown that, if the vecior

R

A

s

<

X

2
5
By '- (19)

ing system may now be

and noting thut the earth and the moon are

(16)

(19)

is regarded as the momennun conjugite to R, , the integral J of the motion be-
—a .

comes the Hamiltonian.

Eq. (18):

1

To prove tiis,

’ /
U uo_u-u =
-= .= =24 "R
by T A
1 Ty g8
-Q-R. xp, -H—2
Y 3
A

(93]

substituie for R 4+ using Eq. (19), in



.

IR, and P, are conjugate vectors, Hamillon's eguations,

Il
1]
.
[
[N
Cy
]
NG
W
[}
1)
v
)
©
e

and

f* . - BN o a ) \
= - o J— = vyl — [ e—— —_— - T - o i - DD
P, = gladRA‘J =gradg @t Zx2, == (¢L-7L (22
puing = ) [ : -

- PR

must be satisfied. It is evident that Bo. (21) = identical with Za. (19), defining
b the relation between velociny R it tie Liomeniun D conjughic w0 BA' Now,

h

v

it will be shown (nat EG. (22) reduces 10 tac cguaiions of motion (13) in the ro-
tating system. Tirst,

- '—‘— gruay r . (23)>

o
o
N
]
(o]
5
r
il
us
z
[
[eN
|
a1
‘»J

But,

> - _
r,= = « R, 24
1 T B R (24)
" hence,
. )
17 5.—\ 1 =3
)
'/‘;F uny —.\—
= gradg (#, - Rp a2

I
o~
¢
|
o
1<
ot
v
",,
I
Jos]
b
i
Il
'
Jos]i
=

so that, finally,

and

A = (26)




Similarly,

4R
orads T = - =, (27)

By % e

so that Eq. (22) .nay be written &

/.j‘ —
wf_:vl |54 -k_{ . w-*,‘/ s _ <N
poo.IEL LI oyp -2 oL-v L. (28)
- .o .o =T =A 3 =
. T, ~

Now, from E¢. (19),

(29)

and use of tiis relation o 2—& wnd Ba. (19) 1or P;‘ in E¢. (29) yields
.
e = =24 -~ -~ — N
R, ~OxRkR, = - = - - xR, -4x Oxd - 30
=A - =A ) o - =A - T - ( )
. X
vy S
o — TN
— o L -7 L.
S = =

Finally, if the 2 x R , on Jhe lell s wransposcl Lo e right hand side of EQ.

(30), it becomes identical witi tae cquations of motiion (13) in e roiating sys-
tem.

RELATION BETWEEN THE TWO- TINED CENTER PROBLEM

AND TIIE RESTRICTED Pau“;_h..z

esiricied provlem ina

A H.l.nutom.m J, has now Lecn obtained or tae ¥
rotating coordinate sysw:i W itz vie origin at A:
2 o’ T — N
=zp  -= - = -0 xP - s R,-L-7R,- L
J = =A r - = —~\ =A S =A== =A==
— A

1

with
(32)

(81)



.

I ~ .

referred to the barycenter ol earts and moon, and

The development 50 {ur dillers sii

( ) 11 WO res “&.L::

and Sperling

4+~

stead of two, and th¢ cealer oo '.'.:V rolting coosuiinie s
covelopient, solwtion of Eq. (31) in terms of

tie Dal’yCC"m,L Following toeir
the solution of tie Two-ilNel Ccene:

center problem, the Hamilionian

IS TCTC IO CIE AN I

(33)

Ctpoos ial o) Senualz-Avenstorff, Davidson,

ool in larece winlensions in-

cvstent is at A instead of

r pronley L3 now sougit. For the two-fixed
o

13 DA\&,n qu

’ - Z O
J'= =2 " -7 - (34)
A ll l-)

—é ‘= wrad. , 3’ = P.’
A EA A
and _
. R,/
E_\’ = - \oradﬁ J' = - l - 4 T (35)
: R, r z,

Denoting the solution oi e two-t

restricted problem wiithout primes, tic SO1ULio:

h e

!
—t
o

and

-
_Ii \30’ BO’ t - 2 -

Thus, tie problent is xwucec {0

UlLLo“S in tae :umv.ux Ol Wl TWG—

{ 1he restricted problem in the sum

4oLdd

cenwer solution.

The theorem, mentioied in iie introduction, on e o
the time variation of the initial conditions will now be given a

ixco center proclen by primes and that for the
2 sougnt is 10 have the form

S0 Pyt

11:‘0. ing the time dependence of the initial con-
cd center problem that provide tie solution

me functwnal form as that of the two-tixed

guuations determining
s precise statement.



_ By

THR s = e -

R R

Theorem: If I (2 Do 22, 2, 1) constiuie
- = - —uv —U
the solution of a proulerm. with ifamilionizn J @&, P) while

’ RPN - . .
R (I_{O, _130, ty and P (Zg0 20 1) constitute the solution

of a problem with Humiltonicn J/(R7, P’) with

-
T a\ha
=0
37)
= -'L—)O
ied with 2.y and P (v, de-
(33)
: Py = -srady SR Bos b
o !
where
3@/’ £/> _J@/’B/)_J/(B/, )/):J C _I.) ) (39)
Wherever I and 2, cccur on the right hand side as a re-

sult of the gradient operations, they arc to be replaced by
Eo(t) and Eo(t), rcspucu»cly.

2
This theorecm has been proven by aren torf( ) inanunpublished note and will
now be applied.

To obtain the differential equuiions for O(t) and I O(t) must be
written in terms of R and PA‘, associated with the two-fixed outer problem.
That is,

T Y ’ _T’'m’ /
d =J (fi.%’ 1_)._\) J (13:\’ E‘A )
, (+0)
- T n’ P ! -4 '_:___u_ Q7 . T R’ T
- e EA -P-A .3 (« EA _I: Y EA = )

I*dl

where J (IE , _If& is ¢hizined from Eq. (31) by replacing R, and P, by the
COI‘I‘cSDOHdLAO primed quuntities, and J'® 4, A‘) is given by B¢. (34).

It is now necessory to obtain J* by expressing J in terms of the initial
conditions of the two-Iixed center problem. This is very diticult to do ex-
actly, as the solution 2(5) orthe two-fixed center problem is given in terms of
elliptic functions with the initial conditions entering not only in coefficients of




‘hese functions but also in their o .
{ixed center problem is a transcenionial lunell
approximate solution is, however,
series in time:

lution of the two-~

ial conditions. An

e, e S0
~ ) ~

2

2
2 (41)
_2" PRI .

Using Eq. (40), the Iirst time derivaiive oo d i3
J=-0 R 7P, -2 ‘R :)/ ":—;:—'\&I—i “L-yR,"L). (+2)
2 U U U 3 =A = =A =

Now, Eg. (<2) contzins time derivatlves of I, and PA’ which may be
Ly =

eliminated by means of the Hamilon equations (35) for the two-fixed

center problem:

wu = :
5 By @L-vL).

J=-2-P xPL -2 RIx(- ‘
(43)
and J at t=0 yields

e
joy
("]
-
=
e
Ui
Lol
c+
o
&
=3
.
o]
ot
o
—
U
[
£\
[
£
it
-
c
3]
-
I
o
U
[y
o
U
t
&
v
f
&
s
o
C
0
O
.,
T

I = J*(0 :-ﬁ.:\—" A ’ _.._‘:__“'_1’ - &._—,‘_A : g4
J(O) J (U) = SAO EAO 3 200 ( _I: /_I::) ( )

and

- . — S8 VN T .1
FO) =050y = -2 R, * (—— - ——5 )-S5 B{y @L-vD

(43)
Setting
15 T8 By By (46)

and

(47)

so ..at

J*=J1+J.,.

10



70

i

.3

Wr-em aB 63 S A BB W

——

clockwise

Application of the Arenstorf thcorem, now vields

and

4 = - - X o~ LT -
EAO = - gra 3( J* = = "2y (+9)

as the differential ccuntions oo o \':Lrj:’v.;;v.; UL Lo wwo-iined center initial con-
ditions, which must Le i".c‘a(.m Lothe 1\ a~;’i\'c:j Cceater solution in order that it
may becomc the solutd

v
(@)

CpUClicaa.
L

.- [ TS Lo ! ‘o Nee. oo Tl e - N .
5 WCTe Zed, Us. (23 L (j;\}/, Vol GO SULTS mmmied “.ul\ ThCy
e P > PR T . - T PR .
DAY BUY TRAU R end PO TOotale Clo.awise WD Logalar veloeity Q.
J J sy iy > AT

e ro;gtin;‘ Syslent oo ~otho LU0 e rositicied sroblen at time
e by the 01‘ Llon ol e tho-ll

w nh L.:\i;l cunditions o,;. EOTEIN :A o *ho:,c Lo Lo wcsiricied problem Ly a

AL Uor T-0, the resivicted

il

rac inalid conditions and, hence,

: I, N
SO U Ile D L U00baei G thne T,

rowacion ‘;'“w
and two-_Ned ce.
1ave CXuclly the same solution.

Acwally, of course, J, “oes not vanisl, und it is here thot the selection

of the uoint A cuiers. Ever- e of J, Luolves elthier R, . or P which
: J ’ =A0 =AY’

nial
{

depend oa the sclection of the LUt A, 50 that this point should be selected so
as to minimize the contribuiion of J, to the variation of the Luitial conditions.

This could be done i viricos WHYS, Irasm:c‘: &3 the poesition of the point A
depends on the two parnimerers 2 and y, it is evident that only two conditions

e
J
v
N

can be imposed on the scleetion of A. Several such conditions suggest them-
selves immediniely:

(1) Determine o and 7 so that in J, e coastant teran and the
N . P C L, = Vi
Cociileient of v vanish for the Inlzial values of 1 and P!,
- AO 9230
o that J, viaish for 1=0, wilh initial

2) Determine « and vy so
P{ 9 and wlso vanisi as =T, with the

values of 7 . und
=A0 _

rotated values of B%O and E%O determined by Jl at time T.

3) Determine ¢ and v so that the sguare of Js i3 minimized
over the time interval 0 to T, MDL.‘D' cith\,r the initial values

o Aty e T

S e / v 3 1 3 o
o1 P. . and P oI 1aelr time uv‘z\.AAu\,uu values cdetermined

=A0
by Jl over tac inwerval.

The first meihod has the ¢ p:‘.\....m;ge that oo '~.':.li;Z;Ly of ithe woproximation
would deteriorate with time, oac there is no viovious way ol estimating the
duration of validity. The other two methods Live the disadvantuge that if the
time interval specified is 100 lorg, the d.l)DrQ\l“.q...l\)‘l would not be valid, even
initially, and again, a criierion for "too long™ is missing. It was, theretore
decided to try the first method, which w ould give some insight into the dumtlon
of validity, and might very well produce results of practical value.

11
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DETERMINATION OF ¢ AXD ¥

In accordance with the conclusion of the last section, & and y are to be de-

termined by the equations

E -.(az +vL) =¢C (50)
A0
and
—_ , 4 —-lO 11/ T \‘ . L » » . ~T _— = _l
I e Ve el R 2SR
10 20 -

SO that the Iirst two terms in the power serics expt ansion of J, in Eq. (47) vanish.
The primes have beea omitted in Zgs. (50) and (31) becuusc tfie initial values of
_I_}I'\O and E’A‘O, sorarmnelers Lo wie restricted pxjgbluzﬂ, are
the initial viiues of the resiricied roslem Ly the Arvensiort theorem. =) Now,

I_{F\O and P O dcpcnd on the selection of the point &, so that, for the determination
of o and / from E¢

rregarded ws variuble

50) and (51, they should Lo replaced by the position and
ive to some point independent of AL A p'u'ticularly

S,
momentur of the \bhzclc relat
compact form is obtained for the equutions of & and ¥ by replacing AO by P Pl o
and R, . by R,. or R,,, as follows. First, since from Eq. (19)
—A0Q =10 =20’
Ry, ™ Q% 52

Pao~ Bao Rio> (=)
for any point A fixed relative to earth and moon, it follows that

P..=R,.+0XR . (53)

=10 =10 = =10

Therefore, since iz the rotating system the velocity of the vehicle relative to the
earth is the same as that relative to A (both are fixed points in the rotating system),

Pao = 210 *2 7 (Ryg "By
7 u’ = N
=P 2% @ Eovi ) (54)
Ll = ol —
=Py -(a-gTm LY 55 L,
12
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07 2SN

on making use of Egqs. (8) and (12). Thus, the'third term of Eq.
g )

proportional to

/

(31) will be

— - — - v U
: + 9 =P (e Lo+ -7 =
EAO (a;[_‘ /L) _:_10 ( Py /__L‘ ) N ’
(85)
where the terms in &y have cancled out.
Again using Eqg. (3), the {irstterm of Eg. (531) will involve
= = ——ﬁx_f'&+ o -T—"-.'“._
‘9 I—{AO XBIO_ bl A ;_:_7#’ ) L /;‘_ Bl()
* (56)
—_— - “l - ’l_/// —
. e V7 . d-u
Bpore-giyt ~v=3 k>
and the second term will be proporiional to
{9 r X R = =0} X - 4 1 =~ —I—A .o R
Q SAO 320 2’\;_(& !-i'.u7 yL -y L B Bgo
(37)
_ ~ ' -_ ’_[ — Vs -
=hyy @ By L
so that Eq. (531) may now be written as follows:
TR o umul = =T
gl@rp By L vy Byt L
10 -
T - - = s el = =
- 5= ~-@-—">)R L -y R,. L. (38)
. o L LTl —.)O - D v bl N ‘
l_) - a
20
_dm T oL -yL)-=—y =0
RIS TR S R RS
or, collecting terms in « and ¥:
13
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&‘

L

=

U

g

N gt et i o s st e - am s e me

- _ ~ ! T4 g ! —_
-a Ry, L = =) +—— P.. L
B B (T TS TS S0 =
“10 “20 -
/ D, = R, L i —_ -
T =i{ , 9 = u p I
—-— . ’_A e ] — ~ 4
S AT o TH B FEES U
10 °20 )
(59)
T o 1 1
- —=r R, L - - =)
do-dt =10~ .3 LS
“.0 20
=0
where use has been made of the fact thut
R,.-L =R, - L . 59
Do & =20 = (39)
Using Eq. (s) once more, onc oblains for Eg. (30):
— - - U ! — - - -
Ry, (@¢L~-7vL)-(«-77)L 7Yk ~aL-vL
- Eed - - - — - .
— — - T 2 2002
:Blo'(aé"\/_l;)—a(a' 7) -7 < (GO)
~
2 2 - = u’ .z u-u’ a
:"L&,A.'»‘&(Blo L-/’_‘,fl‘,.f,lk)_/ ‘/@lu L)‘-O
If Ecs. (35) and (G0) are solved for  and y , a pont A i; dgetermined so that tht,
1 ) 7 .
following procedure sl.ould gi\'e an woproximution o the restricted problem valid
for a time interval whose lengia e ,\..ds on i.e size of J* and the rate of variation
of _131 and Pl0 The procedure is carried cut in the rotating sysicm as follows:

Modify the initial conditioas of the resiricted srohlem by a
clockwise rowtion throuzh w T about the noini A, and solve

the two-fixed center proslem with these modified initial

conditions. Then, 1_3’%("‘) and P%\L. given by the two-

fixed center problem, should matca ;_{ AA(T) given by the

restricted problem with unmodified initi:l conditions.

14
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«

"modify the coordisates and veloc

APPLICATIC THZ METHOD .

In order to carry out a numelicu. iesi ol e me I cl, L‘b(, was made of the
i { ram requires
at the earth

Republic m*crnla:ﬁet«uy tralectory prosram. Thel
that initial conditions Le givea in w courdinaie oy 2tem will i

and axes with fixed cirecuons ia spuce he z-uiis points wowards the pole stuar,
the x-axis poinis 10 the {irst poitt ol .‘xries, 3:@1 ne —.Ax's is JCL\,C&,d S0 tihat the
system is or thog o‘:" ;.A;.o. :‘;;_,;l‘. Lninood hesuiputiscludes coordinnies and ve-

.l_.; ouilon 1s avallaole wiich fixes the
; vo-lixed center problem
Sivern initinl cor Amt ons. A setof initial

s lunar raicoiory (referred to, aencerorth,

condmona is a\ ailable wnich y:

03 thebase case) Wil @ moviag moch, siaring seul the eari, closely circling

the moon and relurning to the culii., GThUS, iU 1031 Wie wppiicatlion one could
ives ot varicus uoinis on this base cuse andcom-

pute a two-fixed center problem: iTom i€ Mt Diied conditions 1o obtuin a com-
parison, which should indicate the tine intcrvals over waicn the approximation
i's useful for various portions of e wajeclory.

The modification of the initial coaditions derived in .
was carricd out in a rotating sysie.n, and it is now Levseury 10 raasiorm this

[
(]

nodification for use in tae coorciinu:c syste.n O the (Llerplanelary program. To
see how this may be done, suppose [or the momeni il e point A is at tae bary-
center, i.e., & and 7+ ave hoth zero, and thot e ;i.\;wl and rotating svsiems ar
coincidernt at t = 0. L {5 cvident, inihis case. wat e two-rined center orbit

a clocawise 1‘0;;.10.. L;zroun'h an

obtained from the initizl conditions. .rodilied vy
1

_angle 9 about the burycenter, is exacuy the suié uuuxc 10 the earii and moon

itons hnd been tamodificd wod e earth an d oon ad been

as if the initial coud
rotated counterclockwvise iarough o shout the -Larycenter. Now, he angie 9 is
T, where T is the thne at which 1ie comparison is 1o be mude. Hence, if the
earth, the moon, and me AWO-TlNCU center ornit, corresponding 1o lae modified
initial conditions. i3 1 : ¢ counterclociwise ihrough « T, the earth and
moon will coincide wiix their positons at time T in e fixed system, and the
point corresponcing 1o uime T o1 the nwo-fixed center orbhit is he one 10 be com-
pared with the reswicted prosiem corried out in the iixed sysiem. JMoreover,

this counterciccikwise roiation Ju«.h wransforn s tie nwo-fixed center problem,

with modified initial conditions «rd carth and rmoon in initial position into that

with unmodified initizl conditions an zarth and moon in their T positons. Tnere-
the comparison can be made, using tae interplan-

fore, for & and - both zero,
etary program by fixing tze moon in its T position and l‘cu.,rl“;““ the unmodified

initial conditions 1o the coordinuie system ce ntered at ihe carti at ime T. This
is indicatedin Fig. 2, where the W nprimed initial conditions are referred to the

earth at t = 0, and the primed inital conditions refer to the earth att=T. The
initial conditions are fixed.




A comment on the re.ation beiweeld e momentun vector P, conjugute 0
wiere 3 is b»o to indicate that the barycenter
Recalling the definiticn of PA

Rp, «nd the velocity veclor o,

—i0
he origin of the rowating systein, lanow in order.
in Eg. (19), it follows taat '

o

c-‘
I

2“* - }_)‘.'._’- - ; X . (61)
2 ] :
cnd aence P is 3 Lae veoLoY L i “.\ed system with its componen

releored 1O T ar (RSILNLLILOuS OILin WNEeS. since it has been assumed that the

fiNeC and roiniin, sysicms wre colndiuent el t = 0, .. follows that

™ =N no

53 RN (62)
. U V]

vaere ;.13 iy in oo fined Sysieol crEche. hul LS Zenote rotating system). At

tme T, if the Ppp vector is rotaiic ruaga = T wmwrclocmmse ivwill become
the Ry vecior. Duiihis Is just ¢ enasforraniion 1t has been used to translate
th-: roating to the fixed system.

\ 4 ~ . v
tae L‘\VO"LL.\\,L‘ cenwer G "\l O\h.ku».b.. A-UA.L 12T

rotuiing system (i.e., @ =7 =0),

Thus, i the barycenwr Is Tio origin o e

the prescription for tie appr oxlmciion is the following:

(1) Let

AE=E -E=IT7 (BD-LO) )

be the displacement of the earth inime T.

2)  set

m Lipen. P AT
Ryg 8 =74 T 7= (64)

and . . .
R.. R, . 65
=10 —i0’ (69)
since a wranslution of the origin will 2ot aticct 1he velocity.
(3) TiN the moon ot L (T), wmutis i iis posilion at time T relative to
the earth.
(=) Scive Wi ‘c.\'o—ii\'uc' cericr prov.em wits the moon {{ixed at L (T))
and initic! conaluions Ll ona I 1o obiain wrn wooopximation autime T w0 ihe
restricted prouicin Wil initial conditions Ry, &nd 8.10 and moon initially at L(0).

The winlysis for a system rowiing anout any pmm olier than the bary-
center is cﬁ‘r.cu LUt inoa similar woy, bul the algebra is nore complicated.
The origin of ine rowiing system is < e e point A, defined by Eq. (4), with

« and 7 deterniined from Egs. (33) and (60).

In Fig. 3, the vector A «nd the original and modiiied initial conditions are

shown in the rotwting system.
-

16




S=IINCw ComIY rollen
ix elated to that with unprimed
oon by a rigid rotation which

o rotating system into the lixed
: : t.e barycenter B, which
muy te regarded as Loived fagoilol Lot O s L aecvlerated point in inertial
space, SO tnut more thal a rotulivs is TeQUiTed 1o irwnsiorm back from the rotwating
sysiem to lic Iixed system. In Fig. =, the systean rowting about A is shown at
t=0andt =T.

Again, itis seer cio=liNeo comier nrollent, with primed initial con-
Citions and unprin '
initiz]l conditions a:
is the roiation pari ©

system. It mdst e roiied

i,
o
e
G

5

It is 0w i na prarsiation recuired to complete the transformg-
sod Ciroczions, is atranslation from A to A .
Coasicesed iuriner because it is desired to

1
1
T STl
tion 10 axes inovVilig Wilh oy,
-

\ P - e g S T 2 e
Aciuzlly, his wransluiion nced nol o

find modificaton in the initiul conditions relutive 1o the earth rather than relative
10 A, v

' Referring zgain to Fig, 3, it is =seen tze primed positions of the earth
1 : -~ - -1

and the moon define a line purallel she earth and moon at time T in the
fixed system. Thus, just as in tbc barycenier case,

; = _‘/_\;
Rig=Ryp-=E

and (66)

—-—

/

P’ =P.

To obtain &E, one mey note that ~E is obtuined by & roation of E through «T
=L, J oA ) S5

about A and that this —E is just the negative of a rowation of. A through « T about

E. The vector &, relaiive to E, is given by

i !
: U

=a-—— L=@--—7)L-7 L, | (67)
Tk ~T

Lien

TSR T
a1

l ' and the change in éE induced by a rowation of éE through « T about E is given
, by
(=== ) (L{D) - L (0)) = 7 (L(T) - L(O) - (68)

CHT e

[

.
3

]

~>

= - 4F

1

|

so that finally,

R), =Ry~ @~ ===) (L(T) - L(O)~7 (L(T)-L(0). (69
- ’

_I
- - .
As before, P, which may now e regarded as R19 in the fixed system, 1is unmod-
isied. The two-fixed center problem, with Ryg ard Ryq as initial conditions with
the moon fixed at L (T) relative 1o -te earth, should produce, at time T, 2 good
approximation to the re stricted probiem, with inital condition Ry and Rjg and
the moon initially at L (0), proviced T is small enough so that the second and
higher order time derivatives of J, produce a necligible effect.

@
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PRELININARY NUMERICAL RESULTS

The parameters ¢ and ¥ have been determined for a lunar orbit with the -
following initial conditions:

X19 % -37133.63¢ L

ylo = =36552.567 km

Llo = -30544.317 ki

Xip = -0. 65536162 km/sec
Y10 = ~2 7369109 kimn/sec

2,5 = -1.0439904 im/sec

The distance of the vehicle from the carth is azhout 11.6 earth radii, and it has

a speed of about 3 km/s¢¢.” Tor'these conditions, ihe values of ¢ and ¥ are the
following: : ‘

6 1
= 0,28110731 br

Y

The two-fixed-center calculation with the inizial conditions modified for
evaluation of the position and veloeity of the vehicle ai 23, 33, and 53 hours was
compared with the hase orbit at 23, 33, and 33 nours respectively. The devi-

Via e

- ations in position of the nwo-fixed-center calculation from the base case are shown

in the table below. Included in the same table are tae deviations of the corres-
ponding Kepler problem from the base case.

: Dist. from ’I‘wo—I“ixed

Time Earth Deviation -Center Kepler
23 hr 35.3 ER AX 144 km 170 km
. Ay . 132%km 200 km
Az . 33 km 10 km
.33 hr 42,1 ER A X 262 km 430 km
Ay 133 km 250 km
Az 142 km 30 km
53 hr 52.7 ER AX 1300 km 1970 km
: _ Ay 10s0km 1100 km
Az 993 km 110 km

18
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SUMMARY fb
| |50!

Six mcthods for the &)proximhtion of lunar trajectories by the two fixed
center pruhlen_\lare develup'cd. Four of these methods arise from a formulation
of the restricted probicm in a rotating coordinate system. The origin of the
rotating system, to be regarded as the center of rotation is to be so selected as
to improve the degree of approximation.  The other two are developed from a
formulation in an inertial system with fictitious fixed positions of the carth and

moon selected so as to improve the approximation.

The results of a numerical comparison of the six methods with a typical
lunar trajectory and the Kepler predictions arc presented. These results are

discussed anqrsfo;p_gsuggestigps are made for further development of the theory.
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LIST OF SYMBOLS

Position vector of vehicle relative to the earth-moon barycenter

Position vector of the vehicle relative to the earth

Distance of vehicle from earth

Position vector of the vehicle relative to the moon
Distance of vehicle from moon

Gravitational constant times mass of the earth
Gravitational constant times mass of the moon

Position vector of moon relative to ﬁe earth

Distance of moon from earth

Velocity vector of the moon relative to the earth

Angular velocity vector of the moon relative to the earth .
Magnitude of (3

Origin, relative to the barycenter, of the rotating coordinate
system

Constants relating A to L, Qand L
Projection of A on the plane of the moon's motion
Position vector of the vehicle relative to A

Hamiltonian for restricted problem in a coordinate system
rotating with angular velocity {Jabout A

Position vector of vehicle relative to A in the rotating system
Momentum vector conjugate to R A

iv
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SUBSCRIPTS

NOTE:

Hamiltonian for the Euler, or two fixed center problem
Perturbation Hamiltonian
Rotation matrix through an angle -wt about

A parameter introduced to improve minimization of the effect
of the non-integrable terms in the perturbation equations

Hamiltonian in the inertial system

Momentum conjugate to R in the inertial system

Refers to Euler ;Sroblem
Refers to restricted problem
Refers to initial value
Refers to final value

In general, capital letters represent vectors and the corres-
ponding small letters their magnitudes. Bars over vectors
denote vectors in a rotating coordinate system.



INTRODUCTION

In this report two general methods of obtaining approximations to the three
dimensional restricted problem in terms of the two fixed center problem will be
discussed in detail, The first method is based on a formulation of the restricted
problem in a rotating coordinate system and the second on a formulation in an
inertial system. In both methods perturbation equations are obtained for the
initial conditions of the two fixed center problem regarded as osculating time

varying parameters for the restricted problem. Bqth of these methods represent
generalizations of a method developed by Arenstorf for treating the two dimen-
sional restricted problem in a coordinate system rotating about the barycenter

of the earth and moon.

The present formulation in the rotating system involves the selection of four
scalar parameters in such a way as to reduce the effects of the non-integrable
terms in the perturbation equations. Three of these parameters define the origin,
to be regarded as the center of rotation, of the rotating system. The fourth allows
part of one of the integrable terms to be used to reduce the effect of some of the
non-integrable terms. A method for the determination of these four parametcrs
is presented, and a set of osculating initial conditions is obtained by an approxi-
mate integration of the perturbation equations. In addition to this set three other
sets are obtained by variations in the values of these parameters. In all of the
methods developed the center of rotation is close to the center of the earth if
the portion of the restricted orbit to be approximated has a close approach to the

. earth and no close approach to the moon. The center of rotation is close to the
moon if the portion of the restricted orbit has a close approach to the moon and
not to the earth. For midcourse portions, the center of rotation is somewhere
between the earth and the moon. No attempt has so far been made to extend the
theory to the approximation of portions containing close approaches to both the
earth and the moon,
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The formulation in the inertial system makes use of fictitious fixed positions
for the earth and moon, so selected as to reduce the effect of the non-integrable
terms in the perturbation equations. Two sets of formulas result which differ
in the approximations used in the integration of the perturbation equations.

Altogether, then, six schemes are developed for approximating the restrict-
ed problem by the two fixed center problem. These schemes have been tested
numerically for various portions of a typical lunar trajectory obtained by numeri-
cal integration. Some results of this numerical comparison are presented,
following the analytical treatment.

The comparison shows clearly that the formulations in the rotating system
are superior and the reasons for this are discussed in the last section.
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THEORY FOR THE ROTATING SYSTEM

Derivation of the Perturbation Equations

The equations of motion of the restricted problem in an inertial system with

origin at the barycenter are

R=-pu

3 ~H T3 (1)

Consider a point A defined by
A=aL+gQ+yL’ 2

where L and L are position and velocity vectors of the moon relative to the earth,
and hence are known functions of time satisfying the relation

L =-(wu’)f§=0x @xL) Aj=aL+yL (3)
L =0x L x=0x(QxA)=-w2A1

IxL
Q=1xL

£2

The point A thus rotates about the barycenter with the earth and the moon. The
equations of motion for the restricted problem.in an accelerated coordinate
system with origin at A, but with axes always parallel to those of the inertial
system, are

Ro=-b —3-b —3-A (4)

since

R=A+RA, R=A+RA. R=A+RA (5)

and finally in a coordinate system rotating about A with angular velocity £} the
equation of motion become



e

®

= i SV e R e N <= = e o

= R Ry . - :
RA=-p—-—3-p u-é-A-Qx(QxRA)-Z(QxRA) (6)
" To

where baras denote vectors in the rotating system. We assume that at time
t =0, the axes of the rotating system are parallel to those in the inertial
system, 8o that the constant vectors A, X and A satisfy the relations

A=A (0) A= A(O) = - w2K1 = -wZAl(O) (7)

It is readily verified that the Hamiltonian

[4

-8 B 25

1 =2 -
- — o 8
H ZPA r, T AAI-Q-RAx?A (8)

A

is a Hamiltonian for the problem represented by Eq. () with

RA=gradpA HA=T>A~anA (9)

and

P’A=RA+QxRA=-gradﬁ H

A A

R R

-yt _,r 2 2x._

~3 m r3+w Kl QxFA
1 2

Ry, B ' -

=-p— -4 FHrow Kl-ﬂxﬁﬁ:ﬂx(ﬂxRA) (10)

T T2
which reduces immediately to Eq. (6). A word on the relation between position in
the rotating system R, and its conjugate momentum FA‘and the position R, and
velocity R A in the non-rotating system is necessary for the interpretation of re-

sults to be obtained later. Since the rotating and non-rotating systems are assumed
coincident att = 0

Ryo =Ry

Pa

(11)

0= Rpg+Ox Ry =R,/




are vector equations which are valid component by component, and since I_’l A0
is the velocity relative to A in the rotating system while {ix ﬁAO is the velocity
due to the rotation of the system it is seen that the initial value of the momentum
conjugate to R A is just the velocity in the non-rotating system. The same state-
ments hold for time t also, except that to get component agreement a rotation

through wt is necessary. That is, at time t

RS B
Ry =Mt R,

. (12

S S P =
R, =M (t) B, =M () (R, + Ox R,)

where M—l(t) may be regarded either as a rotation of the axes of the rotating

ar i W i W

system through an angle -wt or as a rotation of R 5 and P , Telative to the
rotating axes through and angle wt, both rotations about the vector €} which is
the same in both systems.

The Hamiltonian H A may be written as the sum of
slp2_p |
Hp =3P, “r, 7T (13)
2
the Hamiltonian for the Euler problem with Hamilton equation

R, = grads H_ =P
AE pAE E AE

(14
R R

; R =epy—i ., ’-2
P R L B
1 2
and a perturbation
2 = -
H=-w"R,” K-0'R,xP, (15)

and

where the subsacript E in Eqs. (14) refers to the functional forms for R
15A obtained by solving Eqs. (14).

A

A solution of the restricted problem with Hamiltonian given by Eq. (8)
and Hamiltonian Eqs. (9 ) and (10) is now sought in the functional form of the
solution of the Euler problem with time varying initial conditions. That is,

OH E N AW W e R
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one seeks the solution of the restricted problem,denoted by a subscript R,in the
form

. . \
RyR (Ragor Paro’ ¥ = Rpg <RA1-:0“" Prpo® t

(16)
- — N
Par (Bagor Panror V= Pag <RAE0“" Papo®) t
with initial conditions for the restricted andEuler problems satis{ying the rela-
tions
RAR®ARe' Paro' 9 = Rago = Rag <§AE0(O)’ Pago(®: 0)= RA©® an

Ppro' 9 =Prpo = Pag <ﬁAE0(O)’ Pygol®). °>= PpE0(®

It has been shown by Arenstorf 1 that the functions R Ago(t) and P
necessary for the validity of Eq. (16) satisfy the differential equations

PAr®ARo’

AE0Y

. R
dt Rago(t) = grad A

AE0 Hj
(18)
S Papo® = -grady g |
AE0 “1
where
- o /. N
Hy=H, (RAEO“)' Papo( t) (19)

is obtained by substitution of RAE <I-%AE0(t), 'PAEO(i), t) and l_)AE (ﬁAEO(t),
?AEo(t), t> for f{A and pA in H (given by Eq. (15). To actually carry out the
substitution using the solution of theEuler problem (which is known in closed forri)
and then compute the gradients required in Eq. (18) would be very complex be-
cause of the extreme complexity of the closed form solution. Even could this

be carried out the integration of the resulting highly nonlinear equations in

R AEo(t) and P AEO(t) v&ould be very difficult, Furﬂler, any approximation method
for integration of perturbation equations for initial conditions must be developed

with great care to avoid the introduction of troublesome secular terms, which

increase in order with higher order approximations.
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In view of this last fundamental difficulty, only a first approximation will
be attempted. This approximation will lead to some integrable terms in the
perturbation equations and the point A will be selected in such a way as to reduce
the effect of the non-integrable terms, which will then be ignored. The resulting
expressions for the time variation in the initial conditions and hence the solution
of the restricted problem represented by Eq. (16) will thus have limited validity
in time. The hardest part of the problem will be in obtaining an estimate for
duration of validity. Although this might appear to restrict considerably the
application of the theory, it should nevertheless be noted that from the solutions
of a sequence of two fixed center problems, each valid for a certain time, the

" solution of the restricted problem may be constructed solely in terms of closed
form calculations without the use of numerical integration. Such a procedure
will be outli'ned later.

Explicit Form of the Perturbation Equations

To proceed with the approximation ﬁl is written in the form

=-QR, . . xP,. . -w? Arw(lo)R « X

H, AE0 X Pago - @ 6 Rppg 1

(20)

-j{wzo Pypk-0R, o x(u Ela- u&%)} dt
T Ty

where the integral is obtained by time differentiation of (—w 6 RAExl QRAEx AE)
and use of the Hamilton Eqs. (14) for the Euler problem. The first two terms
of H1 will be shown to lead to integrable terms in the perturbation equations (18) for
the initial conditions. The factor § permits part of the R ,* A A1 term to appear with
the integrable terms and part with the non-integrable terms. This second part helps
to reduce the effect of the other non-integrable terms. The third term and the
integral are not written explicitly in terms of initial conditions. it is these terms
for which an effort at minimization will be made by proper selection of the factor §

. and the point A, To see how this may be done one now takes the gradients of H
with respect to R Ago @d P AEo to obtain the perturbation equations. The dlffer-

entiation of the triple product in the integral is facilitated by noting that

O o W R R e gy’ T R R . e e
@
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R = A+K+u—‘f?L R2=RA+A-—‘-‘-“‘:—,TL (21)
.ao that
- . N
RAxR1=RAx<A+7‘-%, L)
(22)
RAxR2=RAx<A -“W,L)
The perturbation equations for the time derivatives of R AEgo(t) and P g0
are readily verified to be
d -
at Rago(® = Eradp, p ol =-0xR, oo -w(1-6)¥ , A
(23)
~ = 2
-JLw 6 \VPPAI-\PRP(QxM—wQ)] dt
and
d - 7o
at PAgo(® =-gradp, pofl, =~ Qx Py oo v w6 A +w?(1-6)0; pa
(24)
JL“’ 0¥ ppA,; - 11}1‘“’”“"“"2)]“t
where the M and Q are vectors given by
‘i L A- —Li- 'L
M =p Bty + “' ytu
r,3 r3
1 2
3 5 w0
o=2{u R, x(as ok L>r—5] (25)
1
_ ~N Ry s
+u Ry x(A I )%}
2

These vectors are so defined that they have the same dimension. The ¥'s are

matrices given by
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‘II AE) Rp(AE)

RaEoi PaEoi
(26)
3P
z AE) ( TAEL )
PR \3R, 104 Yep PAEo0i

with the lth row and jth column containing the derivative of the jt‘h component of the

time varying vector in the numerator with respect to the ith component of the initial
value vector in the denominator evaluated at R 0(t) and P o(t) It may be noted
that the transposes of these matrices constitute the transition matrix for the Euler
problem wit}f the transposes of the first two matrices forming the top three rows
and the transposes of the last two matrices forming the bottom three rows.

Det inati f the Origin A and the P neter &
The first term in the right hand side of Eq. (23) and the first two terms on
the right side of Eq. (24) depend only on the initial values R AEO(t) and P AEO(t)
and if these were the only terms present Eqs. (23) and (24) would be integrable.
The remaining terms all involve components of the transition matrix for the
Euler problem and no attempt will be made to include them in the integration.
Instead methods will be sought for making them small, and this will be done by

seeking an approximate minimization of the vectors on which the matrices operate.
These vectors appear in both equations as follows:

N, = w¥(1-8) A, outside the integrals
(27)

N, = w6 Al ingide the integrals

together with M and Q defined in Eqs. (25), which appear inside the integrals.

It will be noted that all these vectors have the same dimension. The vectors

M and Q are functions of time. Since however, they have, effectively, the cubes
of ry and r, in the denominator, it is clear that they are large only for brief

periods of time at approach to the earth or the moon closer than a few earth
radii.
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As a first trial at minimization, 6 and A were sought such that the

scalar ¢

o= le + N22 + Mo2 + M‘:2 (28)
is minimized, where M0 and MP are computed from initial and anticipated final
conditions, respectively. The omission of Q is heuristically justified by an argument
of the following type. Suppose the initial position is close to the earth and the final
position close to the moon. Initially the r, terms are small, so that to minimize
the r, terms <A +“—g—v L> must nearly vanish in order to keep M small. It will
then follow that Q is also small. Evidently, of course, such a procedure will
mean that both M £ and Qf will become more or less large depending on the final

value of T,. In effect, this will place a limitation on the duration of validity of
the two fixed center approximation.

The minimization of Eq. (28) will now be carried out. Since M and, for
that matter Q also, are independent of §, partial de rivatives of o with respect
to 6 involve only the N, and N2 terms:

20 3N

- 1 =

which vanishes for § = -;‘- It now remains to minimize

l 412 2 2
0,=3W K1+Mo + M, (30)

with respect to oo, 8 and y. That is the equations

30, oA, AM, 3 M;
xS W A1r+ M55 +2Mpes—==10 (31)
where x denotes'q, § and y must be solved for o, § and y. Recalling that
L T
A=gL+gli+yL , Aj=al+yL (32)
10
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one obtains the following:

aixl dA dA

S~ da- 5E-Y 550 555 L

(33)

and from the first of Eqs. (25) evaluated at initial and final positions, respective-

/

ly:
S eL(ty vy ), S a(ly ), AN g (i)
r1 Ty 'y T 'y Te
so that
dA _ 2 A .
-'_}=a’:2, A® =0, Ao.__..l.:yl‘z
{ dx 138 13y
, 2 ,
JOM_ (o u 2 271 1 I
Mo °‘< 3t 3 ‘*fﬁ?‘ \—‘:‘;“—3/(
r r r T
1 T2 1 T2 1 2
M-%M—wZC—U—+E—> 8, M.?’M-ﬁ(ﬂ_ L) y
A Iy Ty Iy Ty

Substitution in Eq. (31) forx =g and y lead to
B=y=0
while for x = ¢, one obtains

wt at2+ 2al,2 [(—“—3 +J-"i3>2 + <—E——3-+-L‘L-3>2 ]
Tio T20 Tir  Tof

' 27 1 1 m u' Q
t2up s K 3 3>< 3t
T10 20 10 T20

(e 1G]
. ;<i--—>< )

Y, o1

RO

i=0,f T

r

11

(34

(35)

(36)

87

(38)

(39).

(40)
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Some comments on the value of ¢ may be made. If a close approach only

to the earth is made, that is if either r__ or rlf is close to unity while r,,, and

10 20
T, are both large it is readily seen that
i
~ ol
a - 4
Kt p

which corresponds to placing the origin at the earth, while if a close approach only

to the moon is made

o~

which corresponds to placing the origin at the moon. If a midcourse portion of
the trajectory is to be approximated so that none of the r's is near unity o will
be somewhere between these extreme values -- that is the origin will lie on the
line of centers be;ween the earth and the moon. The origin is at the barycenter
for a=0.

Integration of the Perturbation Equations

Once the point A has been determined the non-integrable terms in the
perturbation equations (23) and (24) will be ignored and the equations to be
integrated are

d

at Rapo® =-TxR 50
b, )=-TxP, . ()+wA
at TAE0 AEO

=-Tx (P, W+ 80xA)

where use has been made of the relation
Gx 0 xK=-u?A

The integrals of these equations are, since 8§ {} x A is a constant,

12

(41)

(42)

(43)
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ﬁAEo(t) = M(t) RAEO(O) (44)
Papo®=M®[ By @ +60xE] -6 0xA (45)

where the matrix M(t) is a rotation matrix through an angle -wt about the
{i direction.

Referring back, now, to Eq. (16), it is seen that, in the rotating system,
a solution to the restricted problem valid from the initial time zeio to some
time t, determined by how long the nonintegrable terms remain negligible, is
obtained by substitution of the expressions (44) and (45) for ﬁAEO(t) and ?AEO(t)
in terms of the two fixed center problem. This means that in order to construct
the solution of the restricted problem in terms of that of the two fixed center
problem, it is necessary, for each time t of interest, to compute initial conditions

from Eqs. (44) and (45), and then obtain the solution,evaluated at the time t, of a

two fixed center problem with these initial conditions. Thus if n points on the re-

stricted orbit are desired, n different two fixed center problems must be evalu-
ated.

One other point should be mentioned. The initial value P AEO(O) is to be
thought of as given by P ARo® Which in turn is determined by the first Hamilton

equation (9) for the restricted problem evaluawca ut time t=0:

-

Prro =" Rag ¥OxRyg=Ry, 46)

where R A0 is the initial velocity in the non-rotating system, since the assump-
tion has been made that the rotating and non-rotating systems have parallel axes
at the initial time. Once P AEO(O) has been been determined P AEO(t) is given by
Eq. (45) and is to be interpreted as an initial velocity relative to A in the rotat-
ing system for the two fixed center problem, by virtue of the first of the Hamilton
equations (14) for this problem. Since in the rotating system the earth and moon
are fixed the initial velocity P AEO(Q is the same relative to any point in this
system. The two fixed center solution obtained from this initial velocity P AEO(t)
and the initial position R AEo(t) lead to position R AE(t) and velocity P AE(t)

for the two fixed center problem, which are to be interpreted as position R

t)
AR
and momentum P AR(t) for the restricted problem in the rotating system.

13
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THEORY FOR THE INERTIAL SYSTEM
Derivation and Integratidn of the Perturbation Equations

A direct approach to an approximation of the solution of the restricted
problem by the two fixed center problem in an inertial coordinate system can
be developed as follows. Recalling the equations of motion for the restricted

problem in the inertial system with origin at the barycenter.
R

R

- 1 2
Ra_u—_s -p’———-s , (1)

" r,

it is easily shown that the Hamiltonian is

=1p2 _u _y
ZPZ r1 r2 47) -

This Hamiltonian has an explicit time dependence since r, and r, are distances

of the vehicle from the earth and moon which are assumeé movinzg in known
orbits about the barycenter. The momentum P conjugate to position R relative
to the varycenter is just li, the velocity relative to the barycenter. The first
Hamilton equation expresses this fact, and the second, together with the first,

ylelds the equations of motion (1).

In this formulation two fixed points are selected for a fixed earth and a
fixed moon. The selection of these points is to be made so as to minimize the
non-integrable portion of the perturbation equations. Thus, denoting positions

relative to these fixed points by stars, the equations of motion are
R* R*

R=- —l—-u —-W(—"—“ ( : (49)
i r3 Y

and the Hamiltonian is
1 1 1 1
H=,2_p2 _.Ll +“<_._ _._1_.>+“’<r_*_2-;;> (49)

The Hamiltonian can be expressed as the sum of two terms. The first is the
Hamiltonian for the two fixed center problem

1 !

14
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and the second
Hy ”<r* "“) <“"“"“ (51)
is the perturbation Hamiltonian which may be written in the form
1 1 ' 1 1
H =p.<—;— -——-—>+u <-— -——) (52)
1 ™10 To ™20 T2
* iR+ . * .
{ R R% BBy, ,‘Rznz R2R2 4
K r* 3 r 3 a " r" '
1 1 2 2
Perturbation cquations for the initial conditions may now be written as
!
at Rot) = gradp H, = 0-gradp, I { . } dt (53)
4 10 R0 20 Ry i
P (t)=-gradp H,= u( ) < +gradn0“{
10 20

If the terms involving the integrals are ignored in the perturbation equations, one

obtains

R,(t) = R(0)

P (=B 0+ (-t ) [ (20 r1°*3> ( w D =) ]
ro* 20

since the first of these equations implies also

Rlo*(t) = Rio*(o) Rio(t) = Rio(o) i=1,2

Seiection of Fixed Positions fior Earth and Moon

It is not easy to see how the fixed positions for the earth and moon should
gelected s8o as to minimize the contribution of the integrals to the perturbation
equations (53). Examination of the equations of motion (48), however, suggests
that two cases should be considered as follows:

16
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1) Motion from earth towards moon; fix earth in its initial and moon in
its final position. '

2) Motion from moon towards earth; fix earth in its final and moon in
its initial position.

The initial conditions for the two fixed center problem will then be determined

by the condition that initial position relative to the barycenter is unmodified and
initial velocity relative to the barycenter be determined from Eq. (54), with
momentum identified with velocity. The solution'RE(Ro, Po(t),t) and PE(RO, Po(t), t)
for the Euler problem will then be related to that for the restricted problem by

Rp@R, P, t) = Rp(R, P (t), t) (56)

PpRys Poy )= PLR , P_(1), 1)

where RR and PR are to be interpreted as position and velocity relative to the
barycenter at time t.

RESULTS OF NUMERICAL COMPARISONS

Two methods of approximating the restricted problem by the two fixed .
center problem have been obtained in the preceding two sections. In addition to
these methods, three others based on the formulation in the rotating system have
been considered. These last three methods are defined as follows:

A, The center of rotation is taken at the center of the moon if the portion
of a lunar trajectory to be approximated lies in "moon reference'"’; that is, if all
points on this portion are within about 9 earth radii of the moon, For portions of
the trajectory outside moon reference the center of rotation is taken at the earth.
The method has not been applied to portions of a lunar trajectory crossing the
moon's sphere of influence. Thus the values of ¢ used for method A:

o= -I-T%L? earth reference
o= ;lli—#l moon reference

are the two extreme values noted in the discussion following Eq. (40) for o

16
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In addition, the parameter § is taken to be zero,

B. This method uses the value of o determined by Eq. (40). The value
of § is taken to be ome.

C. This method also uses the value of ¢ given by Eq. (40), and § is set
equal to zero.

The two methods already derived are identified by
D.  The method in the rotating system.

E. The method in the inertial system,

F. Finally, a sixth method was tried in which the effect of the perturba-
tion Hamiltonian in the inertial formulation was neglected. That is the initial

conditions for the two fixed center problem are to be just the initial position and
velocity relative to the barycenter.

The comparison of the effectiveness of these methods was carried out as
follows. First a typical lunar trajectory was integrated with the effects of mov-
ing earth and moon included, but with all perturbations due to sun, other planets,
oblateness etc. eliminated from the program. The integration was carried out
by the Republic Interplanetary Program using the Encke method. In this program
the earth is used as origin in earth reference and the moon is the origin in moon
reference. Various points on this typical lunar trajectory were taken as initial
points and the two fixed center approximation was computed at various specificd
later times. This necessitated the transformation of the initial conditions associat-
cd with the various methods (relative to the origin A for the rotating formulations
and relative to the barycenter for the inertial formulations) into equivalent initial
conditions relative to the earth or moon for portions of the trajectory in earth and
moon reference respectively.

17
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The base lunar trajectory started at time t=0 from about 6590 Km {rom the
center of the earth, reached a perisel distance of about 4350 Km at 71 hr. and
reached a perigee distance of 8174 Km at 153.9 hr. The entry and exit from moon

reference occurred at about 58.7 hr. and 84.1 hr. respectively.

Tables I, H, III and IV contain some typical results from the numerical calcu-
lations. Tables I and IV are for the earth-reference portions of the trajectory on
the first and last legs, respectively. Tables II and III are for moon reference
portions approaching and receding from the moon, respectively. The left hand
column contains the initial and final times for the portion of the trajectory to be
approximated. The deviations Ax, Ay and Az in kilometers for the various
methods are entered in columns headed by the corresponding letter. Thesc
deviations represent the difference in the rectangular coordinates relative to
the reference body, the values predicted by the various methods being subtracted
from the values given by the base case. The column headed K, which appcars
in Tables I and 1V, give the deviations for the Kepler problem. The last column

gives the value of o determined from Eq. (40) for use in methods B, C and D.

In Table V the x, y and z coordinates of the vchicle relative to the reference
body are given for the various times which appear in Tables I, I, III and IV. Also
given are the distances of the vehicle from the reference body in earth radii. The

distance of the earth from the moon is a little less than 60 E. R.

Some general conclusions on the relative merits of these methods may be
drawn. First it may be noted that methods A and C are practically the same ex-
cept for midcourse portions of the trajectory. The reason for this is that except
for such portions the value of ¢ is such that the origin is nearly at the earth for

earth reference and nearly at the moon for moon reference.

To summarize the results, then, for the methods described in this report

18
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A and C are best for long range on the return leg.
B and C have a slight superiority for midcourse.

D is hest in moon reference, on the first leg and for short range on the
return leg.

E and [ are inferior almost everywhere.

The Kepler problem is superior to all of these methods for short to medium
range in the neighborhood of the earth and moon. It fails, however, for long range

and midcourse portions of the trajectory.
CONCLUSIONS

The results of the numerical comparison made in the previous section show
that the formulation in a rotating system is best suited to the approximation of the
restricted problem by the two fixed center problem. This is not really very sur-
prising because in a rotating system the earth and moon are automatically fixed
This is achieved by introducing terms corresponding to the centrifugal and Coriolis
accelerations, which are interpreted as perturbations on the two fixed center
problem. In the inertial system, on the other hand, fixed positions for thc carth
and moon had to be selected more or less arbitrarily. As a consequence the
perturbations from the two fixed center problem so selected depends on this
sclection. Thus approximations have been introduced before the problem of
approximating the effect of the perturbations can even be considered. It would-
therefore seem that a rotating system, in which only the problem of how to

treat the perturbations appears, should be the proper choice.

From the numerical results shown in the last section, it is evident that
the problem of treating the perturbations is far from an easy one. None of the
fulfilling the expectations that one might have for the theory. Nevertheless,
there are a number of reasons for expecting that further development of the
theory should lead to useful and interesting results.
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If, for example, one considers the determination of the origin for the
rotating system, it is obvious that the method used is fairly crude. The sum
of squares of certain vectors appearing in the perturbation equations is minim-
ized. Evidently, if .t.he sum were a weighted sum, different origins would be
obtained depending on the weighting factors used. It should, however, be
remarked that the present determination yields plausible results, e.g., in the
case of motion of an earth or moon satellite, one would certainly expect the
rotation of initial conditions implied by Eqs. (44) and (45) to be about the center
of the primary attracting body, or at least about a point very close to its center.
A large rotation about a point very far removed from the center would obviously
drastically distort what should be a stable orbit. Thus, the property that the
origin is closer to the earth or moon according as the portion of the restricted
problem orbit under consideration is closer to the earth or moon is a reasonable
one and shows that the theory is at least qualitatively correct in this respect.
For midcourse portions of the trajectory, one cannot use the satellite argument
to suggest the proper choice of the origin, though it might be conjectured that the

origin should vary continuously with the portion of the trajectory to be approximated.

It is possible to make a few remarks on the parameter 6. Reference to the
perturbation Eqs. (23) and (24) shows that if 6 = | the non-integrable terms are all
integrals from initial to final time, which therefore have zero initial value. It
would thus appear that for short range predictions, results for 6 = 1, that is
for method B, would be superior to the others. This result has been observed

for some midcourse runs.

It may have been noticed that the perturbation term Q- R A XP A in the
perturbation Hamiltonian H1 (see Egs. (15) and (20) could be treated in the same
way as the RA . Al term. That is, a factor € could be introduced in the same
way a8 6. This would change the rotation in the initial conditions, resulting
from integration of the perturbation equations, from an angle wt to an angle
€wt, To actually introduce the ¢ and obtain a value for it in the same way as
for 6 would not be easy because the terms in (1-€¢) which would appear both
inside and outside the integrals would be far more complex and difficult to
treat than the corresponding terms in (1-6).
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To summarize, then, the various methods so far developed for the rotat-
ing system depend on the selection of four parameters a, B, v (determining the
center of rotation A) and 6. At this stage it appears that some sort of a param-
eter study using variations from the values of the parameters so far used, and
including also, perhaps, variations in the parameter € defined in the last para-
graph, might well lead to some useful approximation formulae. There are many
ways in which such a study might be carried out, for example, by using weighting
factors with the vectors to be minimized, by a systematic variation of the param-
eters, or by the development of some sort of interation procedure. From the
above discussion, it would appear that 8 and y should be close to zero, that €
should be close to one, and that ashould vary approximately according to Eq. (40).
Only for the parameter § is it difficult to estimate a value except for relatively
short range predictions for which one would expect 6 to be close to one.
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Table V. Lunar Trajectory - Position Relative to Reference Body

Time in Distance in Reference
hours X in Km Y in Km Zin Km = Earth Radii Body
0 47 6300 1800 1.0 Earth
-19000 -8000 -10000 3.6 Earth
10 -45000 -100000 -46000 18.6 Earth
30 -53000 -210000 -82000 _ 36.8 Earth
50 -51000  -290000 -103000 - 48.8 Earth
59 50000 22000 482 8.6 Moon
60 46000 20000 187 7.96 Moon
66 24000 7300 ~-1500 3.97 Moon
71 1300 . -3700 ~2100 .70 Moon
72 -5000 ~-3500 -681 .96 Moon
73 ~10000 -2100 1080 1.62 Moon
75 -19000 1100 4450 3.0 Moon
80 -38000 9100 12000 6.4 Moon
84 -52000 15000 18000 9.0 Moon
85 ~-57000 -329000 -97000 54.5 Earth
86 -56000 =-327000 -95000 54.2 Earth
100 -50000 ~-300000 =75000 48.9 Earth
120 -36000 -=240000 -41000 38.4 Earth
163 2300 ~13000 16000 3.3 Earth
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This report presents the @erivation of a set of two body parameters and VI

their associated perturbation equations. These equations are applied to the

. polar oblateness problem characterized by the second spherical harmonic. A

modified Poisson method is used to obtain the first order solution to the problem.
The modification of the method is introduced in order to eliminate the occurrence
of secular terms which, because of the parameters employed, would have caused
a rapid deterioration of the solution. The approximate solution is expressed as
a function to frue anomaly. Some analysis of second order theory is presented
which suggests that difficulties with particular initial conditions may be avoided.
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DEFINITION OF SYMBOLS

t Time
f True anomaly
R Position vector
r |R | = magnitude of R
m Gravitational constant
G Angular momentum vector
P Eccentricity vector
Q GxP
i Unit vector in direction of x axis
i Unit vector in direction of y axis
k Unit vector in direction of z axis
e Eccentricity
g G|
P P
q 1Q |
(o4 Time of perigee passage
a Semimajor axis
n Mean motion
K2 Coefficient of second harmonic of the potential due to the oblateness
of the earth
g
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_P,2 Q.2
73 3
B \p ) * < _q—>
(r,6) Polar coordinate system introduced in x-y plane
SUBSCRIPTS
1,2,3 1st, 2nd, 3rd component of a vector
o Initial value
s Short periodic
4 Long periodic
SUPERSCRIPTS ’
. Differentiation with respect to time

'

Differentiation with respect to true anomaly
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INTRODUCTION

Among the numerous troublesome aspects which one encounters in at-
tempting to integrate the perturbation equations for the polar oblateness prob-
lem, two difficulties may occur which appear to be subject to, at least some
amelioration. In general, there are two decisions one must make before
these difficulties become apparent. These decisions consist of selecting a set
of parameters and a method of integrating the perturbation equations. The
possible sets of two-body parameters may be divided into two groups, one of
which contains canonical parameters and one which does not. Two methods of
integration, in general use, are Poisson's method (1) and Von Zeipel's method
(2). The latter method is applied only to canonical parameters. In most in-
stances, regardless of the set of two-body parameters or method of integration
employed, the results present two interesting properties. The first is the
occurrence of terms in the approximate solution which show a secular growth.
The second is the presence of singularities in the second order corrections for
certain initial conditions of the parameters. The first property is not, in
general, objectionable since the secular terms usually appear in the expressions
for angle parameters. However, for some parameters, such as the unit perigee
vector, the occurrence of secular terms destroys the unit characteristic and
limits the applicability of the results to relatively short time intervals.

It is proposed in this report to derive a set of parameters and their as-
sociated perturbation equations which, when applied to the polar oblateness
problem, yield, after approximate integration, equations for the parameters
which manifest no secular growth to the first order, except for one element.

A brief analysis of the structure of the second order perturbation equations is
developed which suggests that the occurrence of singularities arising from
initial conditions is not a necessary concomitant of the polar oblateness prob-
lem. The application of second order theory, however, will not be attempted in

1



-“!wm'“ﬂ'~vw . -

this report, because the parameters which have been chosen degenerate for
nearly circular orbits. Even though the set of parameters employed is de-
fective, the comparative simplicity of the perturbation equations recommends
the use of these parameters for a clearer insight into the particular difficulties
which their use is intended to eliminate. It should be noted that the degener-
acy of the parameters for nearly circular orbits is not a case of replacing one
difficulty with another, but is simply a consequence of the choice of parameters
and not of the integration technique. A more judicious choice of parameters
has been made and an improved integration technique developed which elimin-
ates the imperfections in the present method. A report is now in preparation

which incorporates these developments.



DERIVATION OF A SET OF PARAMETERS FOR THE KEPLER PROBLEM

To specify the solution of the vector equation

.o R
R+ES - (1)
r

six independent parameters are needed. For the purposes of this report, the
following set will be used:

o, the time of perigee passage;
P, the eccentricity vector;

Q, a vector perpendicular to P and lying in the plane of motion.

At first glance it would appear that this set contains seven independent
elements; but, since P and Q are mutually orthogonal, any one component may
be expressed as a function of the remaining five. The vectors P and Q may be

Eq. (1)

-

RxR=0 ) (2)
Integration of Eq. (2) gives
RxR=G (8)

in which G is the constant angular momentum vector. Now take the cross
product of Eq. (1) and G .

oo uR
RxG+—5xG=0 (4)
S8 1.3 = :

obtained from Eq. (1) in the following manner: Take the cross product of R and

AVe

After expanding R x G using Eq. (3) and recalling that G is constant, Eq. (4)

integrates to
LR

RxG-—T—=P , : (5)



in which P is a constant vector. To find the magnitude and direction of P

rewrite Eq. (5) in the form

p=r(R-E-4)-R@ B @
Evaluating Eq. (6) at perigee yields
P=U ue (7)
=" > K
where

e is the eccentricity of the orbit

and I_Jp is a unit vector in the direction of perigee. Let Q be defined by
Q=GxP=HRxG+R¢’ (8)

The magnitudes of G, P,and Q are g, p = ue, and q = gp, respectively.

Since R, P,and Q are coplanar, R may be expressed as a linear combina~
tion of P and Q

R=a; P+0yQ )

The scalar product of Eq. (9) with P yields

R- £=rcosf

ag = (10)
1 2
P p
where { is the true anomaly of R. Sifnilarly,
R-Q rsinf
Oy == = (11)
2 2
q q
R may be written as
R=&,P+&,Q (12)
Making use of the well known formulas
2
T g (13)

=y,(l+ecosf)



w, 1 et gm0

. g
== (14)
T
it follows that
o.=_sinf (15)
1 gp ‘
e+ cosf
I e——— 1 :
%" " gq # (16)

PERTURBATION EQUATIONS

After having obtained a set of parameters the first step in deriving the
perturbation equations is to introduce the perturbing force F on the R.H.S. of
Eq. (1) which gives :

. MR
R+3
T

=F (17)
The perturbing force F will cause R to deviate from the Keplerian orbit, and a
new solution must be found. This solution can also be put in the form of

Eq. (9), but now the parameters G, P and Q will be functions of time. In order
to determine the time dependences, it will be necessary to obtain the differ-
ential equations for the parameters in so far as they depend on the perturbing

force F.

Differentiation of Eq. (3) gives

G=RxR (18)
Substitution of Eq. (17) yields

G=RxF (19)
Similarly, differentiation of Eq. (5) gives

. .o . . R X G '

.Ij:ng*Bxg_"'#—g,— (20)

r
5
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Substituting for G and R yields
P=FxG+RxRxF) (21)
From Eqgs. (8), (19) and (21), Q is given by -

2

Q=LRx@xF)+Fef+2R(G" G) | (22)

The equation for the variation of o, the time of perigee passage, is deriv-
ed from Kepler's equation, which, for 0 < e < 1, takes the form

ched o ehog

n(t-0)= tan “e+cosf - sin 1+e cosf (23)
u 2,
where n =J—‘i3 and g =J+ pa (1-e7).
+a
For e > 1, Kepler's equation is given by
2 2
n (t-0)=tanh ™ ‘/ -1 sinf—il/;a:aé-f— 23")

“e+cosf
N 2 TS
where n = 3 and g =,/ -ua(e” -1). Using various identities, Eqs. (23) may
-a

be put in the following form

-1 _ BR-R R-R

n (t- )= tan TEd 2 (24)
-=)an an
1R-R  R.R

n (t - 0) = tanh™ 5 -3 (24)

(1-—)an a n

Differentiation of these equations with respect to time, and substitution of
Eq. (17) for R gives, in either case

. . 2 - . .
o= {-2R¢-0)+2r+5 [a-H @R RE-LR]} eo
- _



where
1_:13.'3_ 2
“a pu T

and
2
c 2a° "\
a=Ro <—.—-—
AR ”/

It is convenient to have available the total time derivative of true anomaly.
Differentiating the expression

R P 9
cosf = T Y (26)
it follows that
. R - R . P R P
ra-xy X R /7T
- i=ESIRE 2D &) (27)
and therefore
:_g P Q
= - e 28
f 2 P q (28)

APPLICATION OF THE PERTURBATION EQUATIONS
TO THE POLAR OBLATENESS PROBLEM

In this report, the polar oblateness problem will be assumed to be char-
acterized by the perturbing potential

¢=“§a(1-3§> 9)

In order to apply the perturbation equations, previously presented, to this
problem, it is necessary to specify the perturbing force F. This force is the
gradient of the perturbing potential &.



F-—

L3

4

3,,1K2 {l_l

z—} 22k } (30)
2.

The procedure for applying the perturbation equations may be outlined as follows:

(a) Reexpress the perturbation equations in terms of the parameters
P, Q, and G, and true anomaly, f, by substituting Eqs. (9), (12),
and (30) for R R and F, respectwely

(b)  Since the resulting, equatmns are functions of true anomaly, it is
legitimate to take f= g/r2, for a first order approximation. It
follows that the differential equations with respect to time may be
transformed to differential equations with respect to true anomaly.

(c) These perturbation equations are now written as Fourier polynomials.
Terms with constant coefficients are transposed to the L. H. S.

(d) To obtain a first order solution for the system of equations derived
in (c), all parameters on the R. H.S. and the parameter g, wherever
it occurs, are held constant., Under these conditions, the system
can be solved exactly.

(e) The perturbation equation for the parameter ¢ is treated similarly
with some modifications.

Carrying out the operations indicated in (a), (b), and (c) the results are:

3 2 2
S o ?_3_:11P3Q3_2‘§33_+§%’»__1]}

g4 -q P Pq ql 2 p2 2 q2
3,1, - 2

ng {kl_-f‘-<-—sm3f+esm2f+—smf <Q—cos3f

, ) (81)
+ecost-—cosf>] <—>< sm5f+%gsm4f
Q

+('£ 152)8 3f+3esm2f+(4 f) 33<5e cos 5 f

+3ecos4f+(2+Eez)cos3f+4ec052f+(2 ez)cosf>



2
\ 331/ <—19— sm5f+?éesin4f+(’£ 11f?)sm3f+esm2'£

e2
+(8 )smf) (—sm3f+esin2f+(1+z)sinf:|

Q- Py e 17 2
*a']_ ( )(T——cossf+2— cos4f+(4 168)cos3f+3ecoszf

+(4+—e2)cosf>< )( c035f+%-‘§cos4f+(4 113ée2)cos3f

9¢”

P.Q 2
3 3<5e . . 7 2, .
8 008f>"’5‘71— 5 s1n5f+3esm4f+(2+3e )sin 3£

+ecos2f—(%+

2 2
+4esm2f+(—--) smf) <T cos3f+ecos2f+(1+ Z)cosf)]}

(31) cont'd

3
oS TR T

2

3u K P, . 2 2
- 2 3(e 3e 3 (e _;
= g3 {-l_g[-p—(-z— cos 3f+e cos 2f + 5 cosf>+—q (2 sin 3 f

+esm2f+-—sinf>-l+— [( 3) ( T cossf+-2- cos4f

/Qo\
+(4 e)cossf+4ecos2f+(4+--e")cosf) K ") -—cosSf

, |
. e e 7,52 P39 5e?
> cos4f+(z -fé-)cos3f-(z+§e)005f>+—53-a§ —52e—sin5f



M

v ‘ikv. -

+3esm4f+(2+3e)sm3f+4esm2f+(—-—-)sinf> (—cossf

2
+ecost+(1+—)cosf 9[( 3 ) 5e in5f+3

sin 4 f
(z‘t-Q«az)slin:if+5esirxzf+(7-4-13e )smf) <Q3> < sm5f
1" 16 i 16
3e 7 1le2
+-2-sin4f+(z+ )sin3f+esin2f+(-——-;)smf>
P.Q
3 3<§—9—c055f+3ecos4f+(%+gile2)cossf+630052f
1 3e2 )- ( 362 ]
+(2 —)cosf = gin 3f+e sin 2f + (1 + 4 )sinf]} (31) cont'd
3 2
b 5 {;P_g _9_._3}xk
g3 PPp q -
3y 2
g { [ (20053f+c082f+—cosf> \2sm3f+sin2f

P Q
e Q 3/ e e 3 e
t5 sin f>]+'—q [3-<§ sin 3 f + sin 2f+§ sin f>+ -;(-icos3f-c032f

+§cosf>]}xl_<

where

( )=2L)
df

10



Consider the system of homogeneous equations obtained by setting the
R.H.S. of Egs. (31) equal to zero.

2 52
, SB Kop, stz _g_zP_MQsz_&[gpsz + 8 Qsz 1]} 0
) g;: 49 P, P, 9 4q, L2 Zz
3u2K, q P, P..P 2% _q 2 Q P, Q
L 21{ k.._§&+:%'-§_._3‘+§_ﬂ_..1-i+_&.§_& #lo0 (32
X 2
g, Po Py =% p% quz G Py Y
3u"K,g P P Q, Q
28y [Z4 T3r ¥y %y _
G, ¥ —1 { }"1-"0

It will become apparent that P ’ Q 2 and G , Tepresent the long periodic
terms of P, Q, and G, respectively.

For this system of equations, Eq. (8), Q .= G zk gt still holds. Since

2— . 2= . 2= o

It follows from Egs. (32) that

£79, %
Q

t =74 , 0 =

9, q, ,=0 | (33)

L g, = YA
Therefore, for this system of equations, p 0 q n and g . are constant.
Similarly,
P 4
34 :
L =0 34
> ( } (3)

11



so that

( 3") (G )'B (35)

is constant.

Using the identity

g 2,9, 9%
kx=2=22 22 _"L (36)
-"8 P, q 9 P
it follows that
(%’&&ﬁ Qsz) ( I TR T Ty W
(37)
& "9, P, g - g
Therefore, Eqs. (32), can be rewritten as
P G, Q Q
38 =4 A 5 321 _
P£+Ap 3;-1_{2(5—--(-1-;<1-§B>—1_{——-qz}—0>
Q G
’ [ 3z I, 5 _J
Q,+ Aq, | L kx ( B-1)+k } 0 (38)

L

G G
: 3y ) _
"G'Z+Agz{§;—l'{xgz} 0
2

2
gy

where A =

The third components ont‘g'z. Q'z. and g'z are

-~

12



P’ Q3“<ZB 2) 0
Q'sﬁ*“% P, <2--B> 0 (39)
G'g, =0

which form a system of first order, linear, homogeneous differential equations
with constant coefficients. The solution is

p,, =Py cos{A(ZB-2)1}-q sm{a(3B-2)1
Q=P sin{a($B-2)i}+qg s {a(EB-2)} w0

Gg,=Ggo

where P , and G3 o &re initial conditions. Similarly, the first two com-

30’ Q30
ponents of G’ are

G
' 3¢ _
G 1 AGZL gz 0
(41)
G
' 34
G22+AGIL gz 0
This system has the solution
_&
Gll, Giocos<A f\+G- sm(A f\)
Gy, = - Gy sin(A L1)+ G, cos<A L) @

where Glo and G2 o are initial conditions. Using the identities,

13



2y s
q, ql,

G189 _ Ty’

g, & P, P,

(43)

GorC3y_ PoyPay %y %y

g, 8y P, Py 9 9

Egs. (41) may be transformed into

o' +Ag {Pzz Pa, S Qsz}=0
w48\, 5, T, T,
(44)

") 3z
ng, (2 ,
P, P, qz qz}

Eqs. (44) together with the identities

(45)

determine the remaining components of P and @ which are

1 AB <J> A }

(46)
I P TRt Y P2 ()Y
& Py

P Q
Q2z rzB_{ Agz pj 32( >}

14
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All guantities appearing on the R, H.S. of Eqs. (46) are known. After

some algebraic manipulation, the solution for the system of Eqs. (32) may be

expressed as

—cos A (g B-2> f.I

sin A<g B-2>f I

Q3
Gy
2
0 0 C 0
where
- G
cos A f sinA—%f
gy
G
C= -sinA—3&f cosAgsg’-f
g 2
0
and =
I=
| 0

To find the particular solution of Eqs. (31), assume a solution of the form

- sinA(% B-2>f1 o]

cos A(% B-2> f1 0

Plo

1)20

(47) where Eo’ Q o’ and G o are functions of f. Substituting solution (47) into

the L.H.S. of Eqgs.(31) will yield three equations for _130' , QO', and G o"

After solving for these derivatives, and recalling condition (d), P o Q o’ and
G o may then be found by integration alone. If the second order terms in this

15
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solution are neglected, the results are equivalent to integrating the R.H. S, of
Eqgs. (31) and adding the results to solution (47). The first order solution for
P2 Q, G, is

B= EE +[Bs]f

Q =Qz+[gs]:o 48)

f
=9z * [gs]fo

where P Q Gs’ are the integrals of the R.H.S. of Egqs. (31), and the
quantmes in brackets are to be evaluated between the limits f and o

In the perturbation equation for o, Eq. (25) it may be noted that

do

R-F=-3% B._}.::dt

If the parameters a and ¢ are held constant at their initial values

a R
2 et-0,)}= {——R(t o)+~ ' E (49)
Therefore, Eq. (25) may be rewritten in the form
3a
4 { o
a \ Ot e Oo)}
a2 2, o .
=—2{(1-e)(_13'1_1)R--P}-F (50)
-— a — —
P
Differentiation with respect to time is transformed to differentiation with

respect to true anomaly, and the R.H.S. is expressed as a Fourier polynomial.
The result is

16



L{o+—20¢-0y}- s KZ {<3> _-—-cossf

de 5 5e">
+-2- cos 4f + Z>c053f+-coszf+ i~ 5 cosf]

Q
3 56 . 3e 2
-&_D [1 cosSf+-2—cos4f+ 4 169>cos3f

2 L P, Q, .2
-2 o2 f+ (& -1)cosf|-—2 2[5 ansf-Sainaf (51
2 g "4 17 3 L8 3

_.-Z>cosf] P Q3[5e sm5f—-sin4f+<—2-—2>sm3f

+ 30 smzf-<i‘?;+%)smf]+[?; cos 3+ cos2t

f(l-%f—)cosf]}

Holding the parameters on the R.H.S. constant, Eq. (51) is integrated to
yield

- 3a @
0=0,+ |0, -

t-o )] (52)

O

where og is the integral of the second member of Eq. (51).

CONCLUSION

The solution (47) obtained has f appearing in arguments of sines and
cosines, these terms having two essentially different periods: 2m/j (short
period where j is a natural number), and 27/A (long period where A is a
small quantity and equals 3;°K,/g"). The solution is well behaved for all
values of f because f appears in arguments of sines and cosines and because

17



these functions are found only in the numerator. This would not be the case if
Egs. (31) were integrated keeping all parameters constant; for then, the long
periodic terms in the previous solution would be replaced by their first order
approximations. This solution would grow linearly with time.

The next step in the usual procedure for deriving the second order
approximation consists in substituting the first order solution for the parameters
in Eqs. (31). Before this step can be carried out, however, it should be recall-
ed that Eqs. (31) were obtained by putting dt/df = rz/g. If higher order solutions
are to be found, this approximation is no longer valid. Therefore, for a second

order approximation, dt/df must be replaced by its first order approximation

~ derived from Eq. (28).

Now suppose the parameters are replaced by their.first order solutions,
terms of order K23 are neglected, and products of trigonometric functions are
replaced by trigonometric functions of sums. Under the following conditions,
the resulting equations may be integrated to give a well behaved second order
solution:

(a) No constant terms are present

(b) Whenever cos af or sin af occurs (o a small quantity), o must
also appear as a factor in the numerator.

If these conditions are not fulfilled, and the equations are integrated,
f may occur outside trigonometric functions, or small divisors may be present.
A possible solution to these difficulties is obtained as follows:

(a) Denote the short periodic terms of the first order solution of
P,Q,Gby P (B, Q. 1), Q, (B, Q D, G, (B, 9, ) and
assume a solution of the form P = P +£S ®,, 91,’ ), Q= 91,
+ 98 (.? ? Qﬂ.’ f)’ g ='G'L +‘gS (.g ’ Qz' f) Ez’ Qz’ g.ﬂ are new
variables which, to first order, are equivalent to solution (47).

(b)  Substitute these expressions into both sides of Eqs. (31) as
modified in accordance with the qualification regardmg dt/df
mentioned above. Neglect terms of order K2 ; expand into
Fourier polynomials, and neglect terms multiplied by sines

18



and cosines. P . Q g G , are determined from the resulting equations.

Investigations are currently being pursued for the purpose of finding the
second order solution by this method.

APPENDIX

EXAMPLE OF RAPIDLY VARYING PARAMETERS

Whenever perturbation equations for a set of parameters are solved einploy-
ing an approximate integration method, it is always desirable that the parameters
be slowly varying. It is likely that, for the polar oblateness problem, no set of
parameters exist in which all elements possess this characteristic. An example
is presented to demonstrate the existence of rapidly varying parameters for the
polar oblateness problem. Consider the equation

. 3 - 2
z+%§=-—§5§'_<1-5§2—>z+2z]

which is obtained by taking the scalar product of Eq. (30) with k. Given the
initial conditions z (t 0) =z (to) = 0, it follows that all derivatives of z evaluated

at t - to are zero. Therefore z is identically zero.

In the following example it is to be agssumed that this is the case. Then
G=RxF=0orG=Ggk where G,
coordinate system, (r, 0) in the x-y plane. From Eq. (30) two scalar equations

is a constant. Now infroduce a polar

result:

3yK2
4

r-r @ =-k-
r Tr

14 .
;.a;-(rze):o

A particular solution of these equations is given by

19



3_4.,:,K2

= 3 -—g—-
r=r., 6 GoitJr 3+

r 5
0 o
where r , 90 are constant. Since
. 3uK2
— | .2 - ‘
g=|r Gl—Jrop+ =
0
and
2
ecosf=—g;—-1
o
it follows that
3K
ecosf=—-—2&
To
Also, i'=0, so that
. . uroesinf
B B__:rr:.—.____.__ =0

g

As a result it is seen that e sin f = 0. Therefore, it may be concluded

that e > 0, f= 0., From the equation

P Q
_B_=r<cos f; + sinf-(-l->
one obtains

R=r

T i

It is clear that the vector P is always in the direction of the vector R and
is thus a rapidly varying parameter. Consequently, there is no guarantee that
the method of variation of parameters and an approximate integration procedure

will yield a satisfactory solution.

20
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SUMMARY

5
) \60\ ARST
This report describes ’«(method for obtaining a first estimate of initial 1’
values of the Lagrange multipl\fé‘rs for the "two point boundary value problem
of the calculus of variations."

This first estimate is obtained by assuming the ""two impulse orbit transfer"
problem to be a reasonably close approximation to the calculus of variations
problem.
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DEFINITION OF SYMBOLS

Gravitational constant

Vehicle position vector

]B | = magnitude of R

Velocity vector of vehicle
Impulse velocity vector

|A V| = magnitude of A V
Magnitude of thrust

Unit vector in direction of thrust
Mass of vehicle

Mass flow

Constant, proportional to specific impulse

Lagrange multipliers or adjoint variables

"

I 2] = magnitude of )

magnitude of A

Py
Component of ) parallel to R
Component of A perpendicular to R
Time

Time at end of first thrust period

Time at beginning of second thrust period
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INTRODUCTION

The method used to solve the two point boundary value problem of the
calculus of variations is one where the decision functions are such that all the
trajectories being used are extremals [1]. In addition to the state variables,
that appear in the equations of motion, there are a number of adjoint variables
or Lagrange multipliers that satisfy additional equations for the optimization of
the given system. The boundary conditions for the adjoint variables define the
natural end-point conditions of the state variables. This natural end point, in
general will not be the desired end point. A differential correction scheme
provide the means of obtaining another optimum trajectory, the natural end
point of which will be closer to the desired end point [2].

The equations of motion of the vehicle in the gravitational field of a single -
body subject to thrust are as follows:

2 Kk
B_...--U-%- +ﬁl'_1‘_ (1)
r
m(tB)=m(tA)+J\:Bn.1dt (2)
A

where m = - IE{ and T is a unit vector parallel to the direction of thrust.

The optimum decision functions are determined with the help of the
Lagrange multipliers, A, A, and 0 which satisfy the following equations

A 3u(A R)R
A=-BS 22 (3)
r r
g,
o(tB)=a(tA)+ftAodt 4)
1



where

O=£—;_.
m

The thrusting program is determined by the sign of the switching function
S, which is given by

> =
S= _.....) 0 K= knax (5)
m c¢ <0 k=kmin

The direction of the unit thrust vector T is given by the direction of the
Lagrange multiplier \
Y

T=5 (6)

The natural end point if reached when

o} (tF) =1 (7)

The problem is to generate a set of initial values of the Lagrange multi-
pliers such that an optimum orbit can be computed, where the natural end
point matches the desired end point. This is accomplished by obtaining a first
estimate of the initial values and improving these by using a differential correc-
tion scheme.

One of the requirements necessary for a rapid convergence of the differ-
ential correction scheme is that the first estimate of the initial values of the
Lagrange multipliers be reasonably close. The following is a method for ob-
taining a first crude estimate of the initial values of the Lagrange multipliers.
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INITIAL VALUES OF LAGRANGE MULTIPLIERS

First Method

A first estimate for the initial values of the Lagrange multipliers can be
obtained by making the following assumptions about the trajectory.

(a) Two burning periods are required to accomplish the optimum tra-
jectory, one occurring in the time interval to to tl and the other

in the time interval t2 to tf. During the time interval t1 to t, the

2
vehicle is in a coasting region.

(b)  The time intervals in the thrust regions are so small that A V (t 0)
and AY_(tF) are obtained by solving the ""two-impulse orbit transfer"
problem, where

AV (t) = V.t;) - V.(t)
(8)
DYV (t) = V(tg) - V(ty)
(c) In the regions of thrust the gravitational force may be neglected.

If in addition we assume that the thrust direction is fixed the differential
equations for the state variables and the Lagrange multipliers, within the burning
region reduce to

. __cm '

V=-1T (9)

A=0 (10)
t

o (t)=0(ty) +th gdt (11)
A

where
&=- °—m?)‘ (12)
m
3
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and
m(t) =m(t,) + (t-t,) (13)
In the burning regions the thrust vector is in the direction of AV. Therefore
from Eq. (6) we have

AV

A=A FF (14)

In the coasting region, m and ¢ are constant. Thus, it follows that

o(t)) = o(ty) (15)

m(t,) = m(t,) (16)

For the computations of the initial values of the Lagrange multipliers, one
proceeds as follows:

First Eqs. (9) and (10) are integrated in the two burning regions t o tot

1
and t, to tf, resulting in

AV
m(tl) = m(to) e~ (17)

(AVo +AVf)
m(te) = m(t)) e - ————— (18)
X (t) = X (t,) = constant (19)
X (ty) = X (t¢) = constant (20)
Alt,) = &(to) +(t -t X (t) (21)
&(tf) = &(tz) + (tf - 2) X (tz) (22)

where the time spent in the two burning regions is computed by using Eqs. (13),
(16), (17), and (18), and is given by
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. A
m(to) (e ¢ . 1)
(b= tg) = 5 (23)
A A
mt ) e e ° -y
(te-ty) = - (24)

From the assumption that the thrust direction is fixed during each burning
interval it is evident that A and X are in the same direction. Therefore only the
magnitude of A and X need be considered, i.e. A and X.

At the transgition times t1 and t2 the switching function must be zero. Thus,

X)) oty
m(t,) T ¢ . (25)
and
Aty oty . 26
( )" c ( )

It can be shown that by integrating Eq. (11) in the two burning regions and
making use of Eqs. (12) through (26) one forms the following three independent
equations with five unknowns, i.e., ofty)s A (t,)s X (t,)s A (t) and X(tf)

. AV
m(t) ~ 7 (t,) - (27)
" AV, AV, AV,
c —2 1
ce C [¢] C
m(t,) At +3 <1'° > X(t) m(t y © @ - 1)" (t,)
AV
e
A(t )
[ (1-e © )+ Avf] =1 (28)
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AVo AV

c —2 'fﬁ
sy Begre]e G T gl Hepeo o

By making use of the transversality condition \- R- X \_}_+ om= 0 at times
to and tf one can obtain two more equations.

Vit )-AV .
-X(t,) XVO"’ - ;’(’;o) A(t) +o(t)m=0 (30)
AV0+AVf
-X(t,) Z(tf)‘A'Yf - o e °© A(t)+m=20 31
f AVf m(t ) (t) - (31)

Egs. (27) through (31) constitute five equations with five unknowns. The
solution of this system of equations is given by

(AV°+ AVf
e ST e A
A(t)=—>e AV (32)
o
X (t))=0 (33)

) (AVo + AVf)

ot)=e © (34)
AV, +AV))

Ly Bl -5 Ay,

_(tf = e ﬁ—f (35)

X (t)=0 (36)

It is of interest to note that the magnitudes of A at the initial and final times
are equal and directly proportional to the mass at the final time. In addition, the
value of ¢ is also proportional to the final mass and may be expressed as

0= 55 (37)
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Second Method

An approach for obtaining a better first approximation is to remove or at
least ""relax" some of the assumptions made in the first method. More specifi-
cally, instead of completely neglecting the gravitational force in the regions of

thrust it can be assumed that the gravitational force has a constant value of
- uR - MR

—30 in the first region and ; in the second region.
r r
o f

In addition, we assume that the direction of the total acceleration in the
two regions of thrust is parallel to the vector A\_{o and A_Yf, respectively. This
implies that the direction of the thrust is not fixed.

It is clear that in the region of thrust the vector A lies in the plane formed
by the vectors R and AV. It is most convenient to resolve A into components
along the vector R and normal to it. These two components are designated as
A ¢ and An , respectively.

The differential equation for A can now be written as

.o - &E

Ag 3 Ag (38)
e o_u

An 3 An _ (39)

The solution to Eqs. (38) and (39) is given by
- 2 2 inh 28
Ag= ,e(to)coshJ;g t+J2" XE(tO)SIthrs t (40)
A=) (t Jit+Jﬁx t inJ-“—t 41)
n- ﬂ(O)cos r3 “ n(o) 8 r3 } (

Since the intervals of thrust are assumed to be of short duration it is per-
missible to approximate Eqs. (40) and (41) in the regions of thrust by neglecting

the second order terms of a Taylor series expansion, i.e.,
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MO~ At + (E=t) X (t) t, Stst) (42)
LB~ (t,) +(E-t) X (t,)  tystst (43)

Similarly, one can approximate X in the regions of thrust to the same order of

accuracy.

. 2y, .

)\g(t)m 3 (t-t o”‘g (t,) +A£ (t,) (44)
t <t<t

. n . o 1

An (t) ~ - 3 (t-t,) An (t,) + An(t J) (45)

. 2 .

Xg (t)e ;135 (- ty) Ay (tg) + X (t5) (46)
-%:;ts%

. A .

An t)~ - 3 (t-tz))\n (t,) +>‘17 (ty) | (47)

The procedure for obtaining the initial values of the Lagrange multipliers
is now the same as in the first method except that Eqs. (19) through (22) are now
replaced by Egs. (42) through (47).

CONC LUSION

A set of approximate initial values of the Lagrange multipliers have been
derived. In addition, a method for obtaining a better first approximation has
been outlined. It should be pointed out, however, that as one attempts to obtain
these improved first approximations in the manner outlined, the algebraic mani-
pulation of the expressions involved become more cumbersome and additional

approximations may be needed.
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FINAL REPORT

CONTRACT NO. NAS 8-2605

A, CELLSTIAL MECHANICS

In this study perturbation techniques using the classical Hamilton-Jacobi
theory have been developed for application to the restricted three body problem,
The unperturbed trajectory is based on the solution of the two fixed center prob-
lem as outlined in the First Semi-annual report RAC 720-2, submitted in June
1962,

Various approximation methods have been developed for which the initial
position and velocity of a vehicle are known. The derivations have been carried
out in a coordinate system rotating about an accelerated origin, which is sel-
ected so as to minimize the effects of the non-integrable terms in the perturba-
tion equations. This procedure is presented in the Second Semi-annual report
RAC 720-3, submitted in December 1962,

The various approximation methods differ in the manner in which the initial

conditions are modified.

The position and velocity at time to are computed relative to the earth in
the fixed system for two of these methods as follows:
1) Position and velocity at time t in the fixed system are un-
modified.
2) Position Blo’ and velocity _1.110' at time t_ in the fixed system
are computed from the unmodified conditions R, | and R, ~ as

as follows:

Blo' =~R:,10+ ;ﬁ"/[&(t) 'L(O)] + é(t) -—A(o)
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R, '=R, -

=1lo lo “fU,LM(oM»_(_Zx_A_(t)

in which L is the vector from earth to moon, L is the velocity vector of the

moon relative to the earth and the vector A is given by the formula
A=aL@®+yLQ®

and is determined from initial and final positions associated with to and t,
respectively, so as to minimize, in a least square sense, the initial and final
contribution of the non-integrable parts of the perturbation cquations. In the

above methods the earth and moon are considered fixed in their final positions.

A second perturbation theory has also been formulated in an inertial coor -
dinate system, where the fixed positions for the earth and moon have been select-

ed so as to reduce the effect of the non—-integrable terms in the perturbation

equations,

Small variations in the parameters a, v, 0, and ¢ lead to modifications
of initial conditions which would improve the approximation of the restricted
problem by the two fixed center problem. This theory is contained in the Third
Semiannual Report, RAC No. 720-5, submitted in August 1963.

The application of the qualitative theory of differential equations to prob-
lems in celestial mechanics has been explored and methods for analyzing period-
ic solutions of differential equations have been investigated with a view towards
obtaining qualitative information about the motions in a gravitational field of

several bodies.

The application of the variation of parameters to the polar oblateness
problem has been investigated. The following set of two body parameters and

their associated perturbation equations have been derived:

1) The perigee vector P(t) of the instantaneous Kepler orbit
2) The tangent vector Q(t) to this orbit at perigee
3) The time of perigee passage O (t)

A scheme has been devised to evaluate the first order perturbations on
the motion of a space vehicle caused by polar oblateness of the earth. The

2
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parameters P(t), Q(t) and 0(t) have been expressed in terms of the state var-
iables, R and g of Kepler motion and the perturbations to the Kepler orbit re-
sulting from the application of a general force F have been derived. The gener-
al perturbation equations have been used to develop a method for evaluating the
orbital perturbations of a space vehicle due to the polar oblateness of the earth.
It has been found that the terms of the equation with long periods can be written

in closed form.

A modified Poisson method has been used to obtain the first order solu-
tion to the problem. The modification of the method is introduced in order to
eliminate the occurrence of secular terms which cause a rapid deterioration of

the solution.

The approximate solution is expressed as a function of true anomaly and
some analysis of second order theory suggests that difficulties with particular
initial conditions may be avoided. The details of this derivation are given in the

Fourth Semi-annual Report, RAC 720-7, submitted in February 1964.

B. CALCULUS OF VARIATIONS

In this study a differential correction scheme has been developed for the
improvement of the approximate initial values of the adjoint variables (Lagrange
multipliers) so that an integral functional satisfying the desired boundary condi-
tions is optimized. The adjoint variables satisfy a system of equations that are
developed by applying the classical methods of the calculus of variations, proper-

ly extended, or Pontryagin's maximum principle.

A general transition matrix has been derived for the variations of the end
conditions caused by the variations of the initial values of the adjoint variables,
including the variations of the thrusting program and of the final time of the

nominal optimum trajectory.

An iteration scheme has also been outlined for the convergence of the

differential corrections to the desired end conditions.

A method has been established for obtaining approximate initial values of
the Lagrange multipliers in the ""Two Point Boundary Value Problem of the

3



Calculus of Variations'. In this method the following assumptions have been
madc:
1) Two burning periods are required to accomplish the
optimum trajectory.

2) The time intervals in these two regions of thrust are
small so that the changes in velocity can be obtained
from the solution to the "Two-Impulse Orbital Trans-
fer'" problem.

3) In the regions of thrust the gravitational force may be
neglected.
In order to improve this method, the last assumption has been modified
and the gravitational acceleration is not neglected but is regarded as a constant
vector in cach of the burning regions.

r—-g

The details of the derivations are incorporated in the Second, Third and
Fourth Semi-annual Reports, RAC 720-4, 6, and 8 submitted in December 1962,
August 1963, and February 1964, respectively.
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SUMMARY

A differential correction scheme is developed for the improvement of the .
approximate initial values of the adjoint variables so that an integral functional
satisfying desired boundary conditions is optimized. The adjoint variables
satisfy a system of equations that are developed by applying the classical methods
of the calculus of variations, properly extended, or Pontryagin's maximum principle.

Approximate initial values for the adjoint variables are assumed.

A general transition matrix is derived for the variations of the end con-
ditions caused by the variations of the initial values of the adjoint variables,
including the variations of the thrusting program and of the final time of the
nominal optimum trajectory. An iteration scheme also is discussed for the con-

vergence of the differential corrections to the desired end conditions.
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SUMMARY

A differential correction scheme is developed for the improvement of the
approximate initial values of the adjoint variables so that an integral functional
satisfying desired boundary conditions is optimized. The adjoint variables
satisfy a system of equations that are developed by applying the classical methods
of the calculus of variations, properly extended, or Pontryagin's maximum principle.

Approximate initial values for the adjoint variables are assumed.

A general trapsition matrix is derived for the variations of the end con-
ditions caused by the variations of the initial values of the adjoint variables,
including the variations of the thrusting program and of the final time of the
nominal optimum trajectory. An iteration scheme also is discussed for the con-

vergence of the differential corrections to the desired end conditions.
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F(t)

fo &)
f(x,u)
f(x,u,y)
f’ g’ f’é

Id

P(t)

LIST OF SYMBOLS

Semimajor axis of Kepler orbit

Gas exhaust velocity

Eccentric anomaly

Unit vector along the thrust direction

Partials of the vector functions f and g with respect to the
vectors of state variables x and adjoint variables Y

Integral functional to be optimized
Vector function of state variables (n-dimensional)
General form of vector state variables

Scalar functions relating position and velocity vectors a time t
with initial position and velocity vectors for the Kepler problem

General form of vector adjoint variables
Hamiltoni;in

Angular momentum vector R XR
Magnitude of angular momentum

Mass of space vehicle

Number of switchings of thrusting program
Mean motion

Position vector of the vehicle

Velocity vector of the vehicle

Transformation of variations of conventional state variables to
those of the orbit parameters
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Xx, y(T, to)

x_(T)
X(t)
x(t)
b10)
Y
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General vector of state and adjoint variables
Magnitude of position vector

Switching function for engine, "on'" or "off
Final time

Time

Control function of time

Control region (independent of time)
Velocity vector of vehicle

Magnitude of velocity vector

3x(T) 3x(T)
Transition matrix of the partials —am and m
Integral to be optimized g
State vector variables (n-dimensional)
Augmented state vector (xo', X)
Vector of adjoint variables (n-dimensional)
Augmented vector of adjoint variables 0y d)

Transition matrix of the partials 2 (D and ——‘&
Ox(ty) W)

respectivly

GREEK LETTERS

a(t)

[T'(T,t)]

sa(t)

Set of orbit parameters

3x(T)
y(t)

General transition matrix of including the optimum change

of thrusting program

: g —zro e e g = At YN
first six rows of the general transition matrix [I

The last row of the general transition matrix [I"]

lim [X (tj- €) -_):(_(tj+ €)] at time tJ. of change of thrusting program
€~0

lim [x'(tj~€) - §(tj+e)] at time t, of change of thrusting program
€~0

Kroneker's delta

Variation of the set of orbit parameters
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Lh(t) Variation of the general vector of state and adjoint variables due
to the control vector change Au

Af(t) Variation of the vector function of the state variables due to con-
trol vector change Au

Ag(t) Variation of the vector function of the adjoint variables due to the
control vector change Au

Lrx(t) Variation of the general vector of state and adjoint variables

AS(t) Variation of the switching function S(t)

AT Variation of the final time T

6 Eccentric anomaly measured from initial position

A Vector of adjoint variables (Ygr Y50 Yg)

7 Gravitational constant times mass of the attracting body

v Vector of adjoint variables (yl, Yoo y3)

D(t, to) Transition matrix relati.ng variations of the state variables x andthe
adjoint variables y attime t with those at t,

v (t, t) Transition matrix of the set of orbit parameters

(al General transition matrix of %‘%—p)— including the optimum change
of the thrusting program ©

(] The first six rows of the general transition matrix [{3]

07 The last row of the general transition matrix []

SUBSCRIPTS

i,j Components

o Initial value of time t0

SUPERSCRIPTS

] Differentiation wrt time

T Transpose of a matrix

- Vector or matrix reduced to six rows

-1 Inverse of a matrix
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INTRODUCTION

In the problems of the calculus of variations, a system of partial differ-
ential equations must be solved with specified boundary conditions. In addition
to the state and control variables that appear in the equations of motion, the
inequalities of constraints, and the functional that should be optimized, there
is a number of adjoint variables that satisfy additional equations for the optimi-
zation of the given system. These equations are derived by the application of
the classical methods of the calculus of variations, properly extended, or from

Pontryagin's maximum principle [1], (2],

When some approximate values of the adjoint variables at the initial time
t have been calculated, then, by numerical integration of the above systems of
equatmns, an optimal solution is obtained that does not satisfy the desired end
conditions. In this paper, a differential correction scheme is developed that will
improve the approximate initial values of the adjoint variables so that the optimal
solution will satisfy the desired end conditions. A general transition matrix is
derived for the variations of the end conditions caused by the variations of the
initial values of the adjoint variables, including the variations of the thrusting
program of the nominal optimum trajectory and the variation of the final time.
An iteration scheme also is presented for the convergence of the improved

values of the adjoint variables to those of the optimum solution.

First, the general equations of the state variables, used mostly as
constraints, are given, together with the equations of the adjoint variables.
Second, the variational equations for the above systems of equations are

derived, and an application to the problem of minimizing the fuel of a space
given as an example.

the approximate initial values of the adjoint variables, and an iteration scheme
is presented for the convergence of the improved values of the adjoint variables,
so that the optimum solution will satisfy the desired end condiﬁons. Finally,
conclusions and recommendations are presented for the application of this

scheme to the actual flight of space vehicles.
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FUNDAMENTAL SYSTEM OF EQUATIONS

State Variables

The motion of a vehicle is characterized by the vector variable x(t) belonging
to the vector space W at any instant of time t. It is assumed that this motion is

controlled by a control vector u(t).

The fundamental system of equations of state variables is given by
ii(t) = f,(x(t), u(t)) (i=1,2,...n) (1)

where x(t) is an n—dimensional piecewise differentiable state vector, and u() is
an r-dimensional piecewise continuous control vector belonging to an arbitrary
control region U that is independent of time. The functions fi are defined for
XEW and for u €U and are assumed to be continuous in the variables x(t) and
u(t) and continuously differentiable with respect to x(t). For a certain admissible

control u(t), the motion of the vehicle x(t) is uniquely determined.

The integral functional to be optimized is

T
x (1) = jt £, (X, u))dt @

o

The necessary conditions for the optimum control vector u(t) of Eq.(2) are
formulated for fixed boundary conditions of the state variables x(t)) and x(T)

and for free end time T.

Adjoint Variables

At dm dha adiaint o riakla o
€0us in Wi€ aqjoint variaonies

Y = (yo’yl’ e ¥p) = (yo, Yy) which is an (n+1)-dimensional continuous vector,

and is given by

2 (x(t),u(t) )

* —_— 1 — i =

wo=-) THm——we  @=obL..n @)
=0



The Hamiltonian \}/é('_)f(t), u(t), y(t) ) is defined by
n

J’%&»B’!) = Z yi® £(x(®),ut)) “)
i=0

and the systems of Eqs. (1), (2), and (3) correspond to the Hamiltonian system

oy .
Vi

o 3
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i
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{

lo

Pontryagin's maximum principle and transversality condition give, for
optimal xo(T), the function ‘%( Xt),ut), y(t) ) of u() belonging to U attains its
maximum at the point u(t), i.e.

H(x®.um,y0) = sup Fxt),u0,y0) =0
u€evU
(6)

Yo() =<0 and  y, (T) =0

where the subscript | k corresponds to the subscript of the state variables for
which the terminal value xk(’I’) is free. For most of the engineering applications,
we have y_ # 0, which is normalized to v, = 1.

(L)
The Lagrangian multipliers A (t) of the classical calculus of variations are

related to the adjoint variables y(t) by the relationship

(L) of (X(t), X(@t), u) )
A = X, Yo + ;) (]
i#0

‘ If the time t appears explicitly in the system of functions f or f,» then it always

can be transformed to an autonomous system by introducing an auxiliary state
variable that is defined by

xn+1(to) =1 with xn+1(to) = to “ (8)
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Examgle

For a space vehicle powered by a throttled engine and flying in the
gravitational field of only one attracting body, the system of equations of the
state variables, i.e., Eq. (1), reduces to

R=V f1r1p0 15
S - M u(t
Y=o Ry ge ty 5 g ®)
m= -4t f
c 7

where e is a unit vector in the direction of the thrust, and u(t) is the control

r

variable belonging to the range 0 s u(t) < K.

For minimizing the fuel between X(t) and X(T) with free end time, the
integral functional to be optimized, i.e., Eq. (2), becomes
rT
XD =) fo(x®, ue) )t (10)
o

with f =-m = 20
(s ] C

The system of the adjoint variables, i.e., Eq. (3), reduces to

r r - _ B (11)
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The maximum principle and the transversality conditions of Eq. (6) become

/
%=Sup%= yf +V.V+A°(.E_R+B_G)e)_y E.Glzo
o0 - — = 3~ m = 7 ¢
uevuyu r
(12)
Yo =-1 and Yo (T) =0

where f =@ .
o c

From Eq. (1), it is obvious that A //e and that the switching function for
u =0 or u=K is defined by

ALy, -y,

S(t) = — - —— ><0 : | (13)

when u(t) = < K (max)

<< 0 (min) respectively.

VARIATIONAL EQUATIONS

In this section, the variational equations of the optimum trajeétory of a
space vehicle are derived. The formulation of these equations is required for
the application of the differential correction scheme that is developed in the next

section.

The application of Pontryagin's maximum principle for the solution of
optimal problems yields additional information for the synthesis of optimal
controls. Making use of this principle, the system of Eqs. (1) and (3) may be

rewritten in the following general form.

X(t) ( f(x,y,u)
()= = (14)
y g (%y,u)
5
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The variations of this system are obtained by
AL() = F(t) AT (t) + Ah() (15)

where the matrix F(t) and the vector Ah(t) are given by

| of of )
ERY 3y
F(t) =
og °g
E3 dy
- - . (16)
Af f(u+4u) -1
Ah(t) = =
Agj g +Au) -g)

Transition Matrix

The fundamental solution matrix for the homogeneous part of Eq. (19), i.e.,
¢ =F@) o)

with initial conditions é(to,to) =1 (unit matrix), is the transition matrix di(t,to)
of the system. From the properties of the fundamental solution matrix and the

transition matrix ¢(t, t), we obtain

t
AT(t) = $(t.t) AT + [ @@, 7) Ab(n) dT | an
“t

o

which is the solution of the non-homogeneous Eq. (15).

In the example of the powered space vehicle flying in the gravitational field
of one attracting body, Eq. (17) reduces to
N
AE(T) = B(T,t) Axtt) +) &(T,t) Ay At 18)
=l
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where tj is the time at which the thrusting program of the op’tir'num nominal trajec-
tory with the approximate values of initial conditions E-(to) switches ""on" or "off"
during the time interval t,< tJ. <T, and 2 r(T) gives the deviations of the nominal

end conditions from the desired end conditions, i.e.

r
£X(T)
A1 (T) =
Ly(T) J
ox (T) ex(T) :
— — X (T,t
w6y iy | | TR B
¢(T,t) = = (19)
) ey(T ’
ﬂ 3_‘_) Y (T.t) Y (Tt)
() &) x
ri((tj- € - &(tj+ €) l“éi((tj)
Ah(t )= lim =-
“Oliga - vereo| 606

Because the boundary conditions of the state variables at the initial time to
are given, we have A_)_c(to) = 0, and Eq. (18) becomes (see Fig. 1)

Ar(T) =& (T,t ) Are) -) (T, t) 6f t) At, 20)

or

Lx(T) ”Xx Xy" 0 XO) X(J {ax(t)

]
1
>~z

(21)
Ly(T) Y, Y Ay(t,) Y, 0)) Y o))

y j=1 6y (t.)

where X = X(T,t ), and x0 =X(T,t) .
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k)
From Eq. (21), we get
N
LX(T) =X Ay(t) -Z [xx(j) 6X(t) + xy(j) bj(tj)] At 22)
and "~
N
AY(T) =Y Ay () -Z [de) 6X(t) + Yy(j) Gj(tj)] 2, @3)
j=1

Thrusting Program

In the formulation of the variational equations of the optimum nominal
trajectory, the time variation /_‘.tj of the optimum thrusting program has been
included where tj is the time at which the thrust switches "on'" or "off"" and the
switching function of the nominal trajectory is zero, i.e., S(tj) = 0. The time
variation Atj is calculated from the variation of the switching fuaction AS(tJ.+AtJ.)

for which

S(tj +Atj) + AS(’&j + Atj) =0 (24)

From the linear expansion of Eq. (24) we get

. ~_ .@—S-
S(t) &t~- 57 Ar @ +At) (25)

Because Ar (tj + Atj) =-A_1_'(tj) + AT (tJ.) A'cj and —g% AT (tj) =0, Eq. (25)

becomes

S(t.) At, > - }as
J J o

Ar) (26)

™

Expanding the variation A.r(tj) from Eq. (20), we get

i<j
BI(t) =&t t) ATty -) S (tt) OE() Aty @7)
i=1




1<_]

oS(t)
[(t t)Ar(tO) z Q(t t)ér(t)At] (28)

“47 8 )

and, in terms of the variations Ay (t,)» it becomes

r_--—

1 o8¢ 28(t.) i
SRt RTINS ERRE
1 aS(t)
S(t) ax(t) ‘X (t t)‘5X(t) +X (t t)él(t)]At 29)
i=1
sy = |
+s(t1) Wiﬂ_ ¥, 0ty G362 + Y, (6t Gt At
] i=

From Eq. (13) for the switching function S(t), we find that

ALy, -y, . A
SO =4 - —= S(t)=7n—m‘
aS(tj) x|
=(t) ‘10 0,0,0,0,0, - —z} (30)
X (4 m
35(ty) y y- y
a(t { 4 ’ 2 ’ 6 ,0,0,0,-%‘}
A ) m{x|] m{x] mlx]

DIFFERENTIAL CORRECTION SCHEME

Correction Scheme

In this section, a differential correction scheme is developed for the im-
provement of the approximate initial values of the adjoint variables so that the
optimum solution of the problem can be found. The variations of the nominal
optimum trajectory of the space vehicle, calculated for the approximate initial

values of the adjoint variables, have been derived previously.

9
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Making use of Eqs. (17), we solve for A_I_'(to) if we know the variation
£ r(T) at the terminal time T. In the example of the powered space vehicle we
derived Eqs. (22) and (23) for the variations of Ax(T) and Ly(T) caused by the
variations of the adjoint variables A_y(to) at the initial time t, and the variations
Atj at the time tj of the thrusting program, which corresponds to the optimum

nominal trajectory for the approximate adjoint variables.

Free End Time

In the case of free end time T, a variation in the terminal time also is

taken into consideration, and, making use of Eqs. (29), we find that

AX(T) = [TT Ay ) +X(T) AT (31)

Ly(T) = RIAY () +IMAT : (32)
Separating the seventh row of Eqs. (31) and (32), we get

LX(T) = (T] Ay ¢) +A(T) AT (33)

Ay,(T)= Q By(t) + V(D AT @4

where Egs. (33) and (34) are of the form

6x1]=[6x7][7x1] +[6x1]'[1x1]

[1x1]=[1x7][7x1]+[1x1]{1x1]

respectively, [i‘] represents the first six rows of (I'], and 07 represents the

seventh row of (1.

For the solution of the system of Eqs. (33) and (34) for A_z(to) and AT from
the deviations A_f_c('I') and Ay7(’I’) = 0, we need one more relationship, and this is

obtained from Eq. (12), i.e.
7

%('}St th) = z yJ'fJ(t) -fo(t) =0 (35)
=l

10
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Taking the variation of v%E(t) at time t , we get
7 T
) £(t) AY;(t) +Z Yyt Afi(ty) - A () =0 (36)
=1 =1

Because Afj (t,) = 0 and Afo(to) = 0 if the variation of the switching function

AS(tO) does not change the sign of S(t ), Eq. (36) becomes

7
PERARYSANEL (37
j=1

or

g u(t )
V)t Avy) ~RE) FAAE) - —5— Avglt) =0 (38)

Thus, combining Eqs. (33), (34), and (38), we get eigbt equations with eight

unknown variations that are given by

r R A ~ N 4 7 "' n
£X(T) (r] X(T) Ay(t)
0 = Q, ¥4(T) : 39)
. T
0 x(t) 0 AT
(. P L . -

Solving for 4y(t ) and AT, we find that

—

- . o4
£y, [T] X(M | | AX(D
= | Q Y7(T) 0 (40)
AT X (t 3 0 0
X
L J L~ J 4L J

Iteration Scheme

For the calculation of the optimum trajectory of a space vehicle, the
differential correction scheme described in this section is applied, and the

variation of the adjoint vector 2y(t ) at the initial time t_, as well as the varia-

11



tion of.the final time AT, are derived to match the desired conditions at the final
time T in space. Making use of the corrected adjoint variables Y, (to) Z-X(to) +A_)_'(to),
a new optimum nominal trajectory is computed by integrating the system of equations
of the state and adjoint variables, l.e., Egs. (9) and (11), by making use of Eq. (13)
for the optimum thrusting program as described previously. Because the differential
correction scheme has been derived for linear variations of highly nonlinear equations, .
it is expected that there still will be a discrepancy between the desired and the new
computed values of the end conditions Aicl(’rl), where 'I‘1 =T+ 4T.

In general, successive iterations generate corrections A_yk(to) to the adjoint
variables at time to from Ai‘k(Tk) such that

k

Y€ =Xilty) + A¥ ) =¥y + ) Ayt (1)
i=0

which, in turn, gives end conditions with deviations A—’—{kﬂ (Tk+1) f'rom their de-
sired values, and

k

T,y =T+ ) AT, (42)
i=0

This iteration scheme converges to the desired end conditions of the state
vector, provided that the deviations are within the linear range. Departure from
the linear range will be indicated when the deviations of the computed nominal end
conditions from the desired end conditions £X,(T,) are comparable to or exceed

the deviations Ax(T). In this case, each step of the iteration scheme described

above contains a sub-iteration carried out on a parameter ‘yk introduced as a
factor multiplying the deviations Al(k(Tk)’ Thus

A7) =%, A x(Ty @)

* : . * C L *
From Ai‘k (T}), we obtain the correction Axk (t,)» which is added to Y &)

for the k* estimate of the adjoint variables at time to. The sub-iteration consists
of the determination ofa value of Y (O<'yks 1) such that the deviations Ax
computed from the corrected adjoint variables, i.e.

=k+1 (Tk+1)

12
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i
i
| Fena ) =Xyt +Ax ) =¥ ) Ay ) (44)
i
i
i

i=0

are comparable to or less than the deviations Afk(T This procedure is continued

K
until the linear range is reached for which Y = 1 and the iteration scheme converges

to the desired end conditions.

It should be noted that the same procedure is followed when parameters other
than the state variables are specified as end conditions. Of course, these para-

meters must be expressible as functions of the state variables.

&

CONCLUSIONS AND RECOMMENDA TIONS

A differential correction has been developed for the improvement of the
approximate values of the adjoint variables so that the optimal solution of the prob-
lems of the calculus of variations is obtained. The mathematical analysis for the
differential correction scheme for the optimum trajectory of a space vehicle with
minimum fuel consumption between fixed boundary conditions has been presented.
The method developed relies on the variations of the nominal optimum trajectory
of the space vehicle calculated for the approximate initial values of the adjoint
variables, which are assumed to be given. Techniques for the calculation of these

approximate values are not considered in this report.

A general transition matrix has been derived for the variations of the end
conditions caused by the variations of the initial values of the adjoint variables,
including the variations of the thrusting program of the nominal optimum trajectory
and the variation of the final time. An iteration scheme also has been discussed

’ for the convergence of the improved values of the adjoint variables to those of the
optimum problem satisfying the desired end conditions. In addition, a method for

the case of variations beyond the linear range has been outlined.

This program will be highly useful for the determination of optimum space

missions and for optimum orbit transfer for intercept and rendezyous of space

13
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vehicles as well as for optimum navigation and guidance of a space vehicle.
Further work in this area is readily suggested. First, techniques should be
developed for the approximate initial values of the adjoint variables that are
used for the optimum nominal trajectory. Second; this correction scheme
could be extended readily to optimum problems with more general types of

end conditions than those considered in this report. Finally, a more general
differential correction scheme is required for the optimum pursuit of a powered
spacecraft, which would involve a statistical-control scheme for the probabilify

law of a randomly moving point,

APPENDIX

VARIATIONAL PARAMETERS

For the calculation of variations of the optimum space trajectories, there
is a general matrix introduced that relates the variations of the state and adjoint
variables at time t to those at time to‘ This matrix, called the general transition
matrix, requires the computation of the partial derivatives of the state and adjoint
variables at two different times, i.e., to and T, and relates their linear vari-

ations at these times, including the optimum changes of the thrusting program.

When the thrust is "off, " the system of equations for the adjoint variables
is "adjoint" to the system of equations for the variations of the state variables,
which, inthis case, ishomogeneous, and the transition matrix of the state variables
is used for the calculations of the adjoint variables during the coasting intervals
of time, i'f' , ti<t<ti+1 . In this case, the transition matrix of the state
variables X (t.

i+1’
expressed in closed form from the solution of this problem.

ti) is found from the corresponding Kepler problem, and it is

The variations of the state variables and the values of the adjoint variables
for the coasting interval are given by [3].

14
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AZ(t,q) = X, 0t AXE)
1 (45)
-~ _ T “ -~
Yi4q) ‘[X Gt ) XE
where
i = &1 ¥y Xgs X ys X0 Xe)
T (46)
Yt =(vl’y2oY3’Y4:y5'y6)
and
. 3X(t, )
X(t, o, t)= ——itL 47
b (1+1 1) ai‘(ti)

The use of the conventional state variables _§_<(t), which are position and velocity
vectors R and 3 in cartesian coordinates, has the disadvantage that all of their ele-
ments have secular terms that vary rapidly with time. If, instead of the conventional
state variables, other parameters are uéed as state variables, the resultant matrix
might be simplified considerably. For example, consider the following parameters

and their variations:

Lay Rotation of R about I_{

Aa, Rotation of R about R

Aag Rotation of both R and R about H

Aoz4 Change in cos (1},13), keeping v and R constant

Aag Relative change in the semimajor axis Aa/a,

keeping R and R/v constant

PaYo 2N Relative change in the magnitude of the position

. °  vector (Ar/t), keeping R/r and R/v constant.

The transition matrix corresponding to the above parameters, i.e.

Aat) = ¥, t) Aat) (48)



)

- -
v A 0 0 0 0
v r
(o] (o]
-fr gr 0 0 0
v r
i o o
0 0 1 aa3 aa3 aa3
o S . fole'4
40 50 60
! du du da
! 4 4 4
0 0 0 o o) P 0 -
40 50 60
0 0 0 0 1 0
. . . rovorr aa6 5016
2° Su dx
r 50 60 »

where some of the non-zero elements are listed as partials of the orbital para-

meters and are given by Ref. [4] as

G e [ () B E0ED] e

03 n [__g__g--(t-t) 31 (g-(t-t )>+<f 1)~ <°‘4o —~ “4)] ©1)
50!_50 r Ly 1‘ o O

o O
23 fe (1 - -2+ (£ - 1) r—°— a ] | (52)
BU = [g< ) & o 40
60
o r Vv . “a4 N T
4 . ;_v‘o [g"T(l'E,)g.i (53)
Oa4o r“v

3 t) r
2 [6-D) foy (R oo a5 D e

da

o 0

by
l _ -.1:- 2 { ) -_9_ o -_r_v—a }]
+r{1 (1 3>a4'} v % & Vo<40 To'o 4
. o O
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aaeo 2[ <1" a7 {1- “42<1'">}{g*"‘f D ey}
g G2 G-D]

1o r . .
Vﬁo = 1--“7:- fa40'.€+'¥' [ g - v <a4o rov a4> (t.to)] (56)
du . r v r , :

a"‘:o i vJ:zro [g,,,?q (1":')] B %4' [g"‘f (f'1)0r40] 67)

The transformation relating the variation of the conventional state variable A§T=
(AR, AR) tothe varia.t;ons of the above set of parametersAgT- (Aal. Aaz. e e Aae)
is given by

AX(t) = P(t) Lat) and Aa(t) = P(t) -1 AX(t) (58)
where
. -H - HxR
- 0 T 0 0 R
P() = . ;o
Pey }_{ X B -Tv e hd nd T
0 = T =y HxR 4R SR
J R 2v'a v
and
-vH HxR HxE 2a R
— 0 > 3 = R =
ha . hr“ rvv rv 1'- .
_1T )
o (60)
rH -H X B._ .
0 - 0 —3 %& R 0
R v SR
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The relationship between the transition matrix i(t,to) for the conventional
l state variables _%(t) and \I/(t,to) for the above set of parameters a() is given by
A _1 _1 -
l X(t,t)=Pt) ¥(t,t)Pt) and Uit,t)=P) X t)Pi)  (61)
l The scalar functions f,g,f , and g are given by
(Elliptic) (Hyperbolic)
I f=ri(coaa-l)+1 f=;a-(coshe-1)+1
o o
o (e 6-sin g ol sinh 6 -0
b g = (tt)- = g=(tt) - 62)
' [ - 2 3 -
f=22 ging f=-Esinh9
rr rr
o o :
e a . a .
g=  (cos 6-1)+1 g= ;(cosh 6-1y+1
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